Uncovering the Lagrangian of a system from discrete observations

Yakov Berchenko-Kogan

Massachusetts Institute of Technology

7 January, 2012

Background

The Problem

Given discrete measurements of a Lagrangian system, can we recover the Lagrangian?

Background

The Problem

Given discrete measurements of a Lagrangian system, can we recover the Lagrangian?

The Discrete Euler-Lagrange Equations

Given a system with Lagrangian L(x, v), we can discretize the action with time step τ by summing the discrete Lagrangian

$$L_d(x,y) = \tau \cdot L\left(\frac{x+y}{2}, \frac{y-x}{\tau}\right).$$

Background

The Problem

Given discrete measurements of a Lagrangian system, can we recover the Lagrangian?

The Discrete Euler-Lagrange Equations

Given a system with Lagrangian L(x, v), we can discretize the action with time step τ by summing the discrete Lagrangian

$$L_d(x,y) = \tau \cdot L\left(\frac{x+y}{2}, \frac{y-x}{\tau}\right).$$

The principle of stationary action yields the discrete Euler-Lagrange equations

$$D_2L_d(x,y) + D_1L_d(y,z) = 0,$$

relating any three consecutive points x, y, and z on a discrete trajectory.

The Problem

Given a pair of points (x_0, y_0) , we would like to use data points on trajectories that pass nearby to estimate the Taylor expansion of the discrete Lagrangian L_d at (x_0, y_0) .

The Problem

Given a pair of points (x_0, y_0) , we would like to use data points on trajectories that pass nearby to estimate the Taylor expansion of the discrete Lagrangian L_d at (x_0, y_0) .

A Caveat

Two Lagrangians might be equivalent in the sense that they yield the same equations of motion.

The Problem

Given a pair of points (x_0, y_0) , we would like to use data points on trajectories that pass nearby to estimate the Taylor expansion of the discrete Lagrangian L_d at (x_0, y_0) .

A Caveat

Two Lagrangians might be equivalent in the sense that they yield the same equations of motion.

ullet For example, if L(x,y) is a discrete Lagrangian, then the Lagrangian

$$L'(x,y) = \alpha L(x,y) + \beta (y^2 - x^2) + \gamma (y - x) + \delta$$

produces the same discrete Euler-Lagrange equations, for any choice of α , β , γ , and δ .

The Problem

Given a pair of points (x_0, y_0) , we would like to use data points on trajectories that pass nearby to estimate the Taylor expansion of the discrete Lagrangian L_d at (x_0, y_0) .

A Caveat

Two Lagrangians might be equivalent in the sense that they yield the same equations of motion.

ullet For example, if L(x,y) is a discrete Lagrangian, then the Lagrangian

$$L'(x,y) = \alpha L(x,y) + \beta (y^2 - x^2) + \gamma (y - x) + \delta$$

produces the same discrete Euler-Lagrange equations, for any choice of α , β , γ , and δ .

• Trajectory data can't distinguish between equivalent Lagrangians, nor would it be useful to do so.

Taylor Expansion of the Discrete Lagrangian

Given a pair of points (x_0, y_0) , we approximate L_d with its second-degree Taylor polynomial at (x_0, y_0) .

Taylor Expansion of the Discrete Lagrangian

Given a pair of points (x_0, y_0) , we approximate L_d with its second-degree Taylor polynomial at (x_0, y_0) . We rewrite it in the form

$$L_d \approx a(x-p)^2 + 2b(x-p)(y-p) + c(y-p)^2 + d_p(x-p) + e_p(y-p) + f_p,$$
 where $p = (x_0 + y_0)/2$.

Taylor Expansion of the Discrete Lagrangian

Given a pair of points (x_0, y_0) , we approximate L_d with its second-degree Taylor polynomial at (x_0, y_0) . We rewrite it in the form

$$L_d \approx a(x-p)^2 + 2b(x-p)(y-p) + c(y-p)^2 + d_p(x-p) + e_p(y-p) + f_p,$$

where $p = (x_0 + y_0)/2$. The expression in higher dimensions is analogous.

Taylor Expansion of the Discrete Lagrangian

Given a pair of points (x_0, y_0) , we approximate L_d with its second-degree Taylor polynomial at (x_0, y_0) . We rewrite it in the form

$$L_d \approx a(x-p)^2 + 2b(x-p)(y-p) + c(y-p)^2 + d_p(x-p) + e_p(y-p) + f_p,$$

where $p = (x_0 + y_0)/2$. The expression in higher dimensions is analogous.

Discrete Euler-Lagrange Equations

For three consecutive points x, y, and z on a trajectory, we can apply the discrete Euler-Lagrange equations $D_2L_d(x,y)+D_1L_d(y,z)=0$ to find

$$0 \approx 2(a+c)(y-p) + 2b(x-p+z-p) + (d_p+e_p).$$

Taylor Expansion of the Discrete Lagrangian

Given a pair of points (x_0, y_0) , we approximate L_d with its second-degree Taylor polynomial at (x_0, y_0) . We rewrite it in the form

$$L_d \approx a(x-p)^2 + 2b(x-p)(y-p) + c(y-p)^2 + d_p(x-p) + e_p(y-p) + f_p,$$

where $p = (x_0 + y_0)/2$. The expression in higher dimensions is analogous.

Discrete Euler-Lagrange Equations

For three consecutive points x, y, and z on a trajectory, we can apply the discrete Euler-Lagrange equations $D_2L_d(x,y)+D_1L_d(y,z)=0$ to find

$$0 \approx 2(a+c)(y-p) + 2b(x-p+z-p) + (d_p+e_p).$$

We will use nearby triplets (x, y, z) from our trajectory measurements to estimate a + c, b, and $d_p + e_p$.

Scaling the Parameters

• In order to estimate the parameters using many data points, we need to assign weights to the parameters appropriately.

Scaling the Parameters

- In order to estimate the parameters using many data points, we need to assign weights to the parameters appropriately.
- The parameter $d_p + e_p$ has different units from a + c and b.

Scaling the Parameters

- In order to estimate the parameters using many data points, we need to assign weights to the parameters appropriately.
- The parameter $d_p + e_p$ has different units from a + c and b.
- Taylor approximations of the discrete Euler-Lagrange equations suggest that an appropriate rescaling of the parameters at (x_0, y_0) is

$$A := (a+c) \|y_0 - x_0\|, \quad B := 2b \|y_0 - x_0\|, \quad D := d_p + e_p.$$

Scaling the Parameters

- In order to estimate the parameters using many data points, we need to assign weights to the parameters appropriately.
- The parameter $d_p + e_p$ has different units from a + c and b.
- Taylor approximations of the discrete Euler-Lagrange equations suggest that an appropriate rescaling of the parameters at (x_0, y_0) is

$$A := (a+c) \|y_0 - x_0\|, \quad B := 2b \|y_0 - x_0\|, \quad D := d_p + e_p.$$

Scaling the Parameters

- In order to estimate the parameters using many data points, we need to assign weights to the parameters appropriately.
- The parameter $d_p + e_p$ has different units from a + c and b.
- Taylor approximations of the discrete Euler-Lagrange equations suggest that an appropriate rescaling of the parameters at (x_0, y_0) is

$$A := (a+c) \|y_0 - x_0\|, \quad B := 2b \|y_0 - x_0\|, \quad D := d_p + e_p.$$

Discrete Euler-Lagrange Equations

For three consecutive points (x, y, z) on a trajectory, we have

$$0 \approx A(2y - x_0 - y_0) + B(x + z - x_0 - y_0) + D \|y_0 - x_0\|.$$

Discrete Euler-Lagrange Equations

For three consecutive points (x, y, z) on a trajectory, we have

$$0 \approx A(2y - x_0 - y_0) + B(x + z - x_0 - y_0) + D \|y_0 - x_0\|.$$

Discrete Euler-Lagrange Equations

For three consecutive points (x, y, z) on a trajectory, we have

$$0 \approx A(2y - x_0 - y_0) + B(x + z - x_0 - y_0) + D \|y_0 - x_0\|.$$

Estimating Lagrangian Parameters with Several Data Points

Given data of consecutive triplets (x_i, y_i, z_i) , we estimate A, B, and D up to scaling at a point (x_0, y_0) as follows.

Discrete Euler-Lagrange Equations

For three consecutive points (x, y, z) on a trajectory, we have

$$0 \approx A(2y - x_0 - y_0) + B(x + z - x_0 - y_0) + D \|y_0 - x_0\|.$$

Estimating Lagrangian Parameters with Several Data Points

Given data of consecutive triplets (x_i, y_i, z_i) , we estimate A, B, and D up to scaling at a point (x_0, y_0) as follows.

• Construct a matrix M whose rows are

$$w_i \cdot (2y_i - (x_0 + y_0) \quad x_i + z_i - (x_0 + y_0) \quad ||y_0 - x_0||).$$

Discrete Euler-Lagrange Equations

For three consecutive points (x, y, z) on a trajectory, we have

$$0 \approx A(2y - x_0 - y_0) + B(x + z - x_0 - y_0) + D \|y_0 - x_0\|.$$

Estimating Lagrangian Parameters with Several Data Points

Given data of consecutive triplets (x_i, y_i, z_i) , we estimate A, B, and D up to scaling at a point (x_0, y_0) as follows.

• Construct a matrix M whose rows are

$$w_i \cdot (2y_i - (x_0 + y_0) \quad x_i + z_i - (x_0 + y_0) \quad ||y_0 - x_0||).$$

• For the correct values of the parameters, we will have $M\left(\begin{smallmatrix} A \\ B \\ D \end{smallmatrix} \right) \approx 0.$

Discrete Euler-Lagrange Equations

For three consecutive points (x, y, z) on a trajectory, we have

$$0 \approx A(2y - x_0 - y_0) + B(x + z - x_0 - y_0) + D \|y_0 - x_0\|.$$

Estimating Lagrangian Parameters with Several Data Points

Given data of consecutive triplets (x_i, y_i, z_i) , we estimate A, B, and D up to scaling at a point (x_0, y_0) as follows.

• Construct a matrix M whose rows are

$$w_i \cdot (2y_i - (x_0 + y_0) \quad x_i + z_i - (x_0 + y_0) \quad ||y_0 - x_0||).$$

- \bullet For the correct values of the parameters, we will have $M\left(\begin{smallmatrix}A\\B\\D\end{smallmatrix}\right)\approx 0.$
- Estimate A, B, and D by the eigenvector corresponding to the least eigenvalue of M^TM .

Assigning Weights to the Data Points

The matrix of coefficients

The *i*th row of *M* is

$$w_i \cdot (2y_i - (x_0 + y_0) \quad x_i + z_i - (x_0 + y_0) \quad ||y_0 - x_0||).$$

Assigning Weights to the Data Points

The matrix of coefficients

The *i*th row of *M* is

$$w_i \cdot (2y_i - (x_0 + y_0) \quad x_i + z_i - (x_0 + y_0) \quad ||y_0 - x_0||).$$

Distance

We define the distance bewteen (x_0, y_0) and (x, y) to be

$$\delta((x_0, y_0), (x, y))^2 = \left\| \frac{x+y}{2} - \frac{x_0+y_0}{2} \right\|^2 + \tau_s^2 \left\| \frac{y-x}{\tau} - \frac{y_0-x_0}{\tau} \right\|^2,$$

where τ_s is a parameter and τ is the timestep.

Assigning Weights to the Data Points

The matrix of coefficients

The *i*th row of *M* is

$$w_i \cdot (2y_i - (x_0 + y_0) \quad x_i + z_i - (x_0 + y_0) \quad ||y_0 - x_0||).$$

Distance

We define the distance bewteen (x_0, y_0) and (x, y) to be

$$\delta((x_0, y_0), (x, y))^2 = \left\| \frac{x+y}{2} - \frac{x_0+y_0}{2} \right\|^2 + \tau_s^2 \left\| \frac{y-x}{\tau} - \frac{y_0-x_0}{\tau} \right\|^2,$$

where τ_s is a parameter and τ is the timestep.

Weights

$$w_i = \exp\left(-\frac{1}{2\sigma^2}\left(\delta((x_0, y_0), (x_i, y_i))^2 + \delta((x_0, y_0), (y_i, z_i))^2\right)\right),$$

where σ is another parameter.

The Simple Pendulum

The Lagrangian

$$L_d(x,y) = \tau \left(\frac{1}{2} \left(\frac{y-x}{\tau}\right)^2 - \left(1 - \cos\left(\frac{x+y}{2}\right)\right)\right).$$

The Simple Pendulum

The Lagrangian

$$L_d(x,y) = \tau \left(\frac{1}{2} \left(\frac{y-x}{\tau}\right)^2 - \left(1 - \cos\left(\frac{x+y}{2}\right)\right)\right).$$

True Values of Lagrangian Parameters

Using a Taylor approximation to the Lagrangian, we find that

$$\frac{B}{A} = -\frac{4 + \tau^2 \cos\left(\frac{x_0 + y_0}{2}\right)}{4 - \tau^2 \cos\left(\frac{x_0 + y_0}{2}\right)}, \quad \frac{D}{A} = -\frac{4\tau^2}{\|y_0 - x_0\|} \cdot \frac{\sin\left(\frac{x_0 + y_0}{2}\right)}{4 - \tau^2 \cos\left(\frac{x_0 + y_0}{2}\right)}.$$

The Simple Pendulum

The Lagrangian

$$L_d(x,y) = \tau \left(\frac{1}{2} \left(\frac{y-x}{\tau}\right)^2 - \left(1 - \cos\left(\frac{x+y}{2}\right)\right)\right).$$

True Values of Lagrangian Parameters

Using a Taylor approximation to the Lagrangian, we find that

$$\frac{B}{A} = -\frac{4 + \tau^2 \cos\left(\frac{x_0 + y_0}{2}\right)}{4 - \tau^2 \cos\left(\frac{x_0 + y_0}{2}\right)}, \quad \frac{D}{A} = -\frac{4\tau^2}{\|y_0 - x_0\|} \cdot \frac{\sin\left(\frac{x_0 + y_0}{2}\right)}{4 - \tau^2 \cos\left(\frac{x_0 + y_0}{2}\right)}.$$

Parameters Computed From Trajectories

I computed the parameters from the trajectories with Matlab. The graphs of $\frac{B}{A}+1$ and $\frac{D}{A}\|y_0-x_0\|$ are on the following slides.

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · 釣९○

Future Directions

• Recover the Lagrangian from data of several trajectories, and then use it to predict new trajectories.

- Recover the Lagrangian from data of several trajectories, and then use it to predict new trajectories.
- Investigate the best choices for τ_s and σ .

- Recover the Lagrangian from data of several trajectories, and then use it to predict new trajectories.
- Investigate the best choices for τ_s and σ .
- Try adding other kinds of noise to the system.

- Recover the Lagrangian from data of several trajectories, and then use it to predict new trajectories.
- Investigate the best choices for τ_s and σ .
- Try adding other kinds of noise to the system.
- Try the method with real data.

- Recover the Lagrangian from data of several trajectories, and then use it to predict new trajectories.
- Investigate the best choices for τ_s and σ .
- Try adding other kinds of noise to the system.
- Try the method with real data.

- Recover the Lagrangian from data of several trajectories, and then use it to predict new trajectories.
- Investigate the best choices for τ_s and σ .
- Try adding other kinds of noise to the system.
- Try the method with real data.
- Evan S. Gawlik, Patrick Mullen, Dmitry Pavlov, Jerrold E. Marsden, and Mathieu Desbrun, *Geometric, variational discretization of continuum theories*, 2010.
- Ari Stern and Mathieu Desbrun, *Discrete geometric mechanics for variational time integrators*, Discrete Differential Geometry: An Applied Introduction, 2006, pp. 75–80.