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The Problem

Given discrete measurements of a Lagrangian system, can we recover the
Lagrangian?
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Background

The Problem

Given discrete measurements of a Lagrangian system, can we recover the
Lagrangian?

The Discrete Euler-Lagrange Equations

Given a system with Lagrangian L(x, v), we can discretize the action with
time step 7 by summing the discrete Lagrangian

X+y y—Xx
d(va) T < 2 5 — >

The principle of stationary action yields the discrete Euler-Lagrange
equations

DoLy(x,y) + DiL4(y,z) =0,

relating any three consecutive points x, y, and z on a discrete trajectory.
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Recovering the Discrete Lagrangian

The Problem

Given a pair of points (xp, yo), we would like to use data points on
trajectories that pass nearby to estimate the Taylor expansion of the
discrete Lagrangian Ly at (xo, o).
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Recovering the Discrete Lagrangian

The Problem

Given a pair of points (xp, yo), we would like to use data points on
trajectories that pass nearby to estimate the Taylor expansion of the
discrete Lagrangian Ly at (xo, o).

A Caveat

Two Lagrangians might be equivalent in the sense that they yield the
same equations of motion.
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Recovering the Discrete Lagrangian

The Problem

Given a pair of points (xp, yo), we would like to use data points on
trajectories that pass nearby to estimate the Taylor expansion of the
discrete Lagrangian Ly at (xo, o).

A Caveat

Two Lagrangians might be equivalent in the sense that they yield the
same equations of motion.

e For example, if L(x,y) is a discrete Lagrangian, then the Lagrangian

L'(x,y) = al(x,y) + B(y* = x*) + 9y —x) +

produces the same discrete Euler-Lagrange equations, for any choice
of a, 5, 7, and §.
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Recovering the Discrete Lagrangian

The Problem

Given a pair of points (xp, yo), we would like to use data points on
trajectories that pass nearby to estimate the Taylor expansion of the
discrete Lagrangian Ly at (xo, o).

A Caveat

Two Lagrangians might be equivalent in the sense that they yield the
same equations of motion.

e For example, if L(x,y) is a discrete Lagrangian, then the Lagrangian

L'(x,y) = aL(x,y) + B(y* =x*) + 9y —x) +6
produces the same discrete Euler-Lagrange equations, for any choice

of a, 5, 7, and §.

@ Trajectory data can't distinguish between equivalent Lagrangians, nor
would it be useful to do so.
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A Second-Order Approximation

Taylor Expansion of the Discrete Lagrangian

Given a pair of points (xp, o), we approximate Ly with its second-degree
Taylor polynomial at (xp, yo).
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A Second-Order Approximation

Taylor Expansion of the Discrete Lagrangian

Given a pair of points (xp, o), we approximate Ly with its second-degree
Taylor polynomial at (xp, yp). We rewrite it in the form

Lg ~ a(x — p)*+2b(x — p)(y — p) + ¢y — p)* + dp(x — p) + ey — p) + 1,

where p = (x0 + y0)/2.
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A Second-Order Approximation

Taylor Expansion of the Discrete Lagrangian
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v

Discrete Euler-Lagrange Equations

For three consecutive points x, y, and z on a trajectory, we can apply the
discrete Euler-Lagrange equations Dy Ly(x,y) + D1Lg(y,z) = 0 to find

0~2(a+c)(y —p)+2b(x —p+2z—p)+(dp+e).
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A Second-Order Approximation

Taylor Expansion of the Discrete Lagrangian

Given a pair of points (xp, o), we approximate Ly with its second-degree
Taylor polynomial at (xp, yp). We rewrite it in the form

Lg ~ a(x — p)*+2b(x — p)(y — p) + ¢y — p)* + dp(x — p) + ey — p) + 1,

where p = (x0 + ¥0)/2. The expression in higher dimensions is analogous.

v

Discrete Euler-Lagrange Equations

For three consecutive points x, y, and z on a trajectory, we can apply the
discrete Euler-Lagrange equations Dy Ly(x,y) + D1Lg(y,z) = 0 to find

0~2(a+c)(y —p)+2b(x —p+2z—p)+(dp+e).

We will use nearby triplets (x, y, z) from our trajectory measurements to
estimate a+ ¢, b, and d, + ep.

v
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New Parameters for the Lagrangian

Scaling the Parameters

@ In order to estimate the parameters using many data points, we need
to assign weights to the parameters appropriately.
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Scaling the Parameters

@ In order to estimate the parameters using many data points, we need
to assign weights to the parameters appropriately.

@ The parameter d, + e, has different units from a + c and b.
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New Parameters for the Lagrangian

Scaling the Parameters

@ In order to estimate the parameters using many data points, we need
to assign weights to the parameters appropriately.

@ The parameter d, + e, has different units from a + c and b.

@ Taylor approximations of the discrete Euler-Lagrange equations
suggest that an appropriate rescaling of the parameters at (xo, yo) is

A:=(a+c)|lyvo—xl, B:=2blyo—xl, D:=dp+ep.

Yakov Berchenko-Kogan (MIT) Uncovering the Lagrangian 7 January, 2012 5/13



New Parameters for the Lagrangian

Scaling the Parameters

@ In order to estimate the parameters using many data points, we need
to assign weights to the parameters appropriately.

@ The parameter d, + e, has different units from a + c and b.

@ Taylor approximations of the discrete Euler-Lagrange equations
suggest that an appropriate rescaling of the parameters at (xo, yo) is

A:=(a+c)|lyvo—xl, B:=2blyo—xl, D:=dp+ep.

Yakov Berchenko-Kogan (MIT) Uncovering the Lagrangian 7 January, 2012 5/13



New Parameters for the Lagrangian

Scaling the Parameters

@ In order to estimate the parameters using many data points, we need
to assign weights to the parameters appropriately.

@ The parameter d, + e, has different units from a + c and b.

@ Taylor approximations of the discrete Euler-Lagrange equations
suggest that an appropriate rescaling of the parameters at (xo, yo) is

A:=(a+c)|lyvo—xl, B:=2blyo—xl, D:=dp+ep.

Discrete Euler-Lagrange Equations

For three consecutive points (x,y, z) on a trajectory, we have

0~ A2y —x0 — y0) + B(x +z—x0 — y0) + D ||yo — xol| -
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Estimating the Parameters

Discrete Euler-Lagrange Equations

For three consecutive points (x, y, z) on a trajectory, we have

0~ A2y —x0 — y0) + B(x +z—x0 — y0) + D |lyo — xol| -
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Estimating the Parameters

Discrete Euler-Lagrange Equations

For three consecutive points (x, y, z) on a trajectory, we have

0~ A2y —x0 — y0) + B(x +z—x0 — y0) + D |lyo — xol| -

Estimating Lagrangian Parameters with Several Data Points

Given data of consecutive triplets (x;, yi, z;), we estimate A, B, and D up
to scaling at a point (xp, yo) as follows.
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Estimating the Parameters

Discrete Euler-Lagrange Equations

For three consecutive points (x, y, z) on a trajectory, we have

0~ A2y —x0 — y0) + B(x +z—x0 — y0) + D |lyo — xol| -

Estimating Lagrangian Parameters with Several Data Points

Given data of consecutive triplets (x;, yi, z;), we estimate A, B, and D up
to scaling at a point (xp, yo) as follows.

@ Construct a matrix M whose rows are

wi - (2yi — (0 +y0) xi+zi —(x0+y0) lyo—xoll)-
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Estimating the Parameters

Discrete Euler-Lagrange Equations

For three consecutive points (x, y, z) on a trajectory, we have

0~ A2y —x0 — y0) + B(x +z—x0 — y0) + D |lyo — xol| -

Estimating Lagrangian Parameters with Several Data Points

Given data of consecutive triplets (x;, yi, z;), we estimate A, B, and D up
to scaling at a point (xp, yo) as follows.

@ Construct a matrix M whose rows are

wi - (2yi — (0 +y0) xi+zi —(x0+y0) lyo—xoll)-

~

: A
@ For the correct values of the parameters, we will have M (g) ~ 0.
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Estimating the Parameters

Discrete Euler-Lagrange Equations

For three consecutive points (x, y, z) on a trajectory, we have

0~ A2y —x0 — y0) + B(x +z—x0 — y0) + D |lyo — xol| -

Estimating Lagrangian Parameters with Several Data Points

Given data of consecutive triplets (x;, yi, z;), we estimate A, B, and D up
to scaling at a point (xp, yo) as follows.

@ Construct a matrix M whose rows are
wi - (2yi — (0 +y0) xi+zi —(x0+y0) lyo—xoll)-

: A
@ For the correct values of the parameters, we will have M (g) ~ 0.

e Estimate A, B, and D by the eigenvector corresponding to the least
eigenvalue of MT M.

v
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Assigning Weights to the Data Points

The matrix of coefficients
The ith row of M is

w; - (2y,- —(x0+y) xi+zi—(x0+y) lyo— X0||) .
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Assigning Weights to the Data Points

The matrix of coefficients

The ith row of M is

wi - (2yi — (x0 +y0) Xi+2i — (X0 +¥0) lyo — xoll) -

v
Distance

We define the distance bewteen (xg, yo) and (x,y) to be

8((x0,y0), (x, ) = || = 2opn|* 4 2 || 25 — o2

2
=

)

where 75 is a parameter and 7 is the timestep.
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Assigning Weights to the Data Points

The matrix of coefficients

The ith row of M is

w; - (2y,' —(x0+y) xi+zi—(x0+y) [yo— XOH) o

v
Distance

We define the distance bewteen (xg, yo) and (x,y) to be

I = 252 =P o 22 — o

2
=

((x0, y0), (x, ¥

)

where 75 is a parameter and 7 is the timestep.

1 2 2
i = 0 (= 5z (60,00 G592 + (00 30), 0207 )

where ¢ is another parameter.
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The Simple Pendulum

The Lagrangian
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The Simple Pendulum

The Lagrangian
2
La(x,y) =17 (% (y;x> = (1 — cos <%>)> .

True Values of Lagrangian Parameters

Using a Taylor approximation to the Lagrangian, we find that

B_ 4+ 72 cos (@) D 472 sin (X";—yo)

A 4—72c0s (XfR)’ A" yo—xl 4—72cos (xefr)’
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The Simple Pendulum

The Lagrangian
2
La(x,y) =7 (1 (y_x> = <1 — cos <X+y>>) .
2 T 2

True Values of Lagrangian Parameters

Using a Taylor approximation to the Lagrangian, we find that

B 4+7°cos(*}®) D 472 sin (203%0)

A~ 4—72cos(250) A yo— x| 4—72cos (%f0)’

Parameters Computed From Trajectories

| computed the parameters from the trajectories with Matlab. The graphs
of % +1 and % l¥o — xo|| are on the following slides.
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x107° Pendulum simulation at high energy
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Pendulum simulation at high energy with noise
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Pendulum simulation at high energy with noise

B/A+1

Yakov Berchenko-Kogan (MIT)

Uncovering the Lagrangian

<<
2
IO
>
E L L L L L L L
0 1 2 3 4 5 6 7 8 9 10
c
S 40
‘B
o
o
£ 20t i
=]
=}
e}
c
5 o ‘ ‘ ‘ ‘ ‘ ‘ ‘
& 7o 1 2 3 4 5 6 7 8 9 10
Time

7 January, 2012

12 /13



What Next?

Future Directi
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What Next?

Future Directions

@ Recover the Lagrangian from data of several trajectories, and then
use it to predict new trajectories.
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@ Recover the Lagrangian from data of several trajectories, and then
use it to predict new trajectories.

@ Investigate the best choices for 75 and o.
@ Try adding other kinds of noise to the system.
@ Try the method with real data.
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