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Introduction

Parzen window methods are popular in density estimation, kernel regression
etc.

We consider these rules for classification.

Set up:

Binary classification: {(Xi ,Yi )}
n
i=1 ∼ D, Xi ∈ R

D and Yi ∈ {0, 1}. Classify
x ∈ R

D .

Kernel classification rule: [Devroye et al., 1996]

gn(x) =

{

0 if
∑n

i=1 1{Yi=0}K
(

x−Xi

h

)

≥
∑n

i=1 1{Yi=1}K
(

x−Xi

h

)

1 otherwise,
(1)

where K : R
D → R is a smoothing kernel function which is usually

non-negative (not necessarily positive definite).
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Kernel Classification Rule

Examples:

Gaussian kernel: K (x) = e−‖x‖2
2 (p.d.)

Cauchy kernel: K (x) = (1 + ‖x‖D+1
2 )−1 (p.d.)

Näıve kernel: K (x) = 1{‖x‖2≤1} (not p.d.)

Epanechnikov kernel: K (x) = (1 − ‖x‖2
2)1{‖x‖2≤1} (not p.d.)

Näıve kernel: performs h-ball nearest neighbor (NN) classification.

K is p.d.: Eq. (1) is similar to the RKHS based kernel rule.

How to choose h: only asymptotic guarantees for universal consistency are
available [Devroye and Krzyżak, 1989].
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Näıve kernel: K (x) = 1{‖x‖2≤1} (not p.d.)

Epanechnikov kernel: K (x) = (1 − ‖x‖2
2)1{‖x‖2≤1} (not p.d.)
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Metric Learning for k-NN

Dependence on the metric: Finite-sample risk of the k-NN rule may be
reduced by using a weighted Euclidean metric, even though the infinite
sample risk is independent of the metric used [Snapp and Venkatesh, 1998].

Experimentally verified by:

[Xing et al., 2003]

NCA [Goldberger et al., 2005]

MLCC [Globerson and Roweis, 2006]

LMNN [Weinberger et al., 2006]

All these methods learn L ∈ R
D×D so that x 7→ Lx .
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Metric Embedding: Motivation

Some applications need natural distance measures that reflect the underlying
structure of the data.

Distance between images : tangent distance

Distance between points on a manifold : geodesic distance

Usually, Euclidean or weighted Euclidean distance is used as a surrogate.

In the absence of prior knowledge, the data may be used to select the
suitable metric.

Questions we address: Find

ϕ : (X , ρ) → (Y, ℓ2).

h
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Problem Formulation

Multi-class classification:

gn(x) = arg max
l∈[L]

n
∑

i=1

JYi = lK Jρ(x ,Xi ) ≤ hK (2)

where [L] := {1, . . . , L}, JaK = 1{a} and ρ(x ,Xi )
!
= ‖ϕ(x) − ϕ(Xi )‖2.

Goal: To learn ϕ and h by minimizing the probability of error associated with gn.

(ϕ∗, h∗) = arg min
ϕ,h

Pr(X ,Y )∈D(gn(X ) 6= Y ) (3)

Regularized problem:

min
ϕ,h>0

n
∑

i=1

Jgn(Xi ) 6= YiK + λ Ω[ϕ], λ > 0 (4)
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Problem Formulation

Minimize an upper bound on
∑n

i=1Jgn(Xi ) 6= YiK, followed with hinge-relaxation
of J.K, we get

minϕ,h̃

n
∑

i=1



2 − n+
i +

n
∑

j=1

[

1 + τij‖ϕ(Xi ) − ϕ(Xj)‖
2
2 − τij h̃

]

+





+

+ λ Ω[ϕ] (5)

where h̃ = h2, τij = 2δYi ,Yj
− 1 and n+

i =
∑n

j=1Jτij = 1K.

Choice of ϕ:

Suppose ϕ is a Mercer kernel map : 〈ϕ(x), ϕ(y)〉ℓ2
= K(x , y).

‖ϕ(Xi ) − ϕ(Xj)‖
2
2 is a function of K alone.

Ω[ϕ] is usually chosen as tr(K), ‖K‖2
F etc.

This choice does not provide an out-of-sample extension.
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ϕ in an RKHS

Theorem (Multi-output regularization)

Suppose

ϕ = (ϕ1, . . . , ϕd ), ϕi : X → R.

ϕi ∈ (Hi ,Ki ).

Then

Minimizer of Eq. (5) with Ω[ϕ] =
∑d

i=1 ‖ϕi‖
2
Hi

is of the form

ϕj =

n
∑

i=1

cijKj(.,Xi ), ∀ j ∈ [d ], (6)

where cij ∈ R and
∑n

i=1 cij = 0, ∀ i ∈ [n], ∀ j ∈ [d ].
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ϕ in an RKHS

Corollary

Suppose

K1 = . . . = Kd = K.

Then, ‖ϕ(x) − ϕ(y)‖2
2 is the Mahalanobis distance between the empirical kernel

maps at x and y.

Corollary (Linear kernel)

Let

X = R
D .

K(z ,w) = 〈z ,w〉2 = zTw.

Then ‖ϕ(z) − ϕ(w)‖2
2 is the Mahalanobis distance between z and w.
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Semidefinite Relaxation

Non-convex (d.c. program):

min
C ,h̃

n
∑

i=1

[

2 − n+
i +

n
∑

j=1

[

1 + τij tr(CM ijC
T ) − τij h̃

]

+

]

+
+ λ tr(CKCT )

s.t. C ∈ R
d×n, C1 = 0, h̃ > 0, (7)

where Mij := (kXi − kXj )(kXi − kXj )T and kXi = [K(X1,Xi ), . . . ,K(Xn,Xi )]
T .

Semidefinite relaxation:

min
Σ,h̃

n
∑

i=1

[

2 − n+
i +

n
∑

j=1

[

1 + τij tr(MijΣ) − τij h̃
]

+

]

+
+ λ tr(KΣ)

s.t. Σ � 0, 1TΣ1 = 0, h̃ > 0. (8)
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Algorithm

Active sets (A): Find (i , j) for which the hinge functions are active.

The program reduces to the form,

min
Σ,h̃

tr(AΣ) + r h̃

s.t. Σ � 0, 1TΣ1 = 0, h̃ > 0. (9)

where A = λK +
∑

(i,j)∈A τijMij and r = −
∑

(i,j)∈A τij .

Alternatively solve for Σ and h̃ by gradient descent and projecting onto the
convex constraint set.
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Algorithm

Require: {Mij}
n
i,j=1, K, {τij}

n
i,j=1, {n

+
i }

n
i=1, λ > 0, ǫ > 0 and {αi , βi} > 0

1: Set t = 0. Choose Σ0 ∈ A and h̃0 > 0.
2: repeat

3: At = {i :
∑n

j=1

[

1 + τij tr(MijΣt) − τij h̃t

]

+
+ 2 ≤ n+

i } × {j : j ∈ [n]}

4: Bt = {(i , j) : 1 + τij tr(MijΣt) > τij h̃t}
5: Nt = Bt\At

6: Σt+1 = PN (Σt − αt

∑

(i,j)∈Nt
τijMij − αtλK)

7: h̃t+1 = max(ǫ, h̃t + βt

∑

(i,j)∈Nt
τij)

8: t = t + 1
9: until convergence

10: return Σt , h̃t
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Experiments & Results

Set up:

5 UCI datasets

Methods: k-NN, LMNN, Kernel-NN, KMLCC, KLMCA and KCR (proposed).

Average error (training/testing) over 20 different splits.

k−NN LMNN Kernel−NNKMLCC KLMCA G−KCR L−KCR
0

2

4

6

8

10

12

14

16

18

20
Segment (2310,98,7)

 

 

Train error
Test error
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Discussion & Summary

Proposed a method to embed (X , ρ) into an ℓ2 space for kernel classification
rules.

Learned the bandwidth of the Parzen window.

LMNN requires target neighbors to be defined a priori whereas KCR does not
require any such neighbors to be defined.

Compared to LMNN and KLMNN, our method involves fewer tuning
parameters.

KCR provides a unified and formal treatment for solving metric learning
problems while other methods have been built on heuristics.

Issues: Computationally intensive ∼ O(n3).
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Questions
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Thank You
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