Selling to a Group

Nima Haghpanah (Penn State)
with Aditya Kuvalekar (Essex) and Elliot Lipnowski (Columbia)

ACM EC 2021
What mechanism is optimal (maximizes seller's revenue) given the constraints of incentive compatibility and individual rationality?
What mechanism is optimal (maximizes seller’s revenue)?

(s.t. Incentive compatibility & Individual rationality)
What mechanism is optimal (maximizes seller's revenue)?

(s.t. Incentive compatibility & Individual rationality)
What mechanism is optimal (maximizes seller's revenue)?

(s.t. Incentive compatibility & Individual rationality)
What mechanism is optimal (maximizes seller’s revenue)?
(s.t. Incentive compatibility & Individual rationality)
What mechanism is optimal (maximizes seller's revenue)?
(s.t. Incentive compatibility & Individual rationality)
company pays v_1 for software \approx company doesn’t buy software
What mechanism is optimal (maximizes seller’s revenue)?
What mechanism is optimal (maximizes seller’s revenue)?
(s.t. Incentive compatibility & Individual rationality)
Sell at price 2 if CTO agrees.

Not IR: $v_1 = 0$ then Utility of CEO = $-\frac{3}{2} \cdot 1$.

Sell at price p if both agree.

Sell iff $w_1 v_1 + w_2 v_2 \geq \delta_{\text{max}}$.

$p \approx 0.35$ at $p \approx 0.78$.

$w_1 = \sqrt{\frac{3}{7}}, w_2 = 1 - w_1, \delta = 1 + w_2^2 \approx \frac{3}{9}$.

$v_1 \sim U[0, 2], v_2 \sim U[0, 3]$.

seller \rightarrow\text{software} \rightarrow CEO \leftarrow\text{company} \text{ money} \leftarrow CTO \rightarrow company
CEO

Sell at price p if both agree

Sell iff $w_1 v_1 + w_2 v_2 \geq \delta_{max}$

$P[v_1 \geq p] \approx 0.35$ at $p \approx 0.78$

$v_1 = \sqrt{3/7}$, $w_2 = 1 - w_1$, $\delta = 1 + w_2^2$
Sell at price $\frac{3}{2}$ if CTO agrees

Not IR:

$\text{Utility of CEO} = -\frac{3}{2} \cdot \frac{1}{2}$

Sell at price p if both agree

Sell iff $w_1 v_1 + w_2 v_2 \geq \delta$

$\text{max}_p \left[v_1 \geq p \right] \approx 0.35 \text{ at } p \approx 0.78$

$w_1 = \sqrt{\frac{3}{7}}, w_2 = 1 - w_1, \delta = 1 + w_2^2$
Sell at price $\frac{3}{2}$ if CTO agrees
Not IR: $v_1 = 0$ then Utility of CEO = $-\frac{3}{2} \cdot \frac{1}{2}$
Sell at price p if both agree.
Sell at price p if both agree

$\max_p p \mathbb{P}[v_1 \geq p] \mathbb{P}[v_2 \geq p] \approx 0.35$ at $p \approx 0.78$
Sell iff $w_1 v_1 + w_2 v_2 \geq \delta$

\[
\begin{align*}
w_1 &= \sqrt{\frac{3}{7}}, \quad w_2 = 1 - w_1, \quad \delta = 1 + \frac{w_2}{2}
\end{align*}
\]
Theorem

The following mechanism is optimal:

1. Allocation *maximizes* weighted sum of virtual values

2. Weights *minimize* weighted virtual surplus

3. *Transfer rule is “defined appropriately”*
Theorem

The following mechanism is optimal:

1. Allocation maximizes weighted sum of virtual values

\[\text{Allocate} \iff \sum_i w_i^* \phi_i(v_i) \geq 0 \]

where \(\phi_i(v_i) = v_i - \frac{1-F_i(v_i)}{f_i(v_i)} \)

2. Weights minimize weighted virtual surplus

3. Transfer rule is “defined appropriately”
Theorem

The following mechanism is optimal:

1. Allocation maximizes weighted sum of virtual values

 \[\text{Allocate} \iff \sum_i w_i^* \phi_i(v_i) \geq 0 \]
 \[\text{where } \phi_i(v_i) = v_i - \frac{1-F_i(v_i)}{f_i(v_i)} \]

2. Weights minimize weighted virtual surplus

 \[w^* \in \arg \min_w \mathbb{E}[\max(\sum_i w_i \phi_i(v_i)), 0)] \]

3. Transfer rule is “defined appropriately”
Theorem

The following mechanism is optimal:

1. Allocation maximizes weighted sum of virtual values

\[\text{Allocate} \iff \sum_i w_i^* \phi_i(v_i) \geq 0 \]

where \(\phi_i(v_i) = v_i - \frac{1-F_i(v_i)}{f_i(v_i)} \)

2. Weights minimize weighted virtual surplus

\[w^* \in \arg \min_w E[\max(\sum_i w_i \phi_i(v_i)), 0)] \]

3. Transfer rule is “defined appropriately”

so that payment identity is satisfied
Proof step 1: revenue as virtual surplus

Lemma

Over all mechanisms with interim allocations X_1, \ldots, X_n:

optimal revenue $= \min_i \mathbb{E}[X_i(v_i)\phi_i(v_i)]$

Compare to if individual transfers were allowed:

optimal revenue $= \sum_i \mathbb{E}[X_i(v_i)\phi_i(v_i)]$

\[\frac{5}{9} \]
Proof step 1: revenue as virtual surplus

Lemma

Over all mechanisms with interim allocations X_1, \ldots, X_n

\[
\text{optimal revenue} = \min_i \mathbb{E}[X_i(v_i)\phi_i(v_i)]
\]
Proof step 1: revenue as virtual surplus

Lemma

Over all mechanisms with interim allocations X_1, \ldots, X_n

$$\text{optimal revenue} = \min_i \mathbb{E}[X_i(v_i)\phi_i(v_i)]$$

Compare to if individual transfers were allowed

$$\text{optimal revenue} = \sum_i \mathbb{E}[X_i(v_i)\phi_i(v_i)]$$
Proof step 2: duality

\[
\begin{align*}
\max_{\text{allocation}} \quad \min_i \quad E[X_i(v_i)\phi_i(v_i)]
\end{align*}
\]
Proof step 2: duality

\[
\max_{\text{allocation}} \min_i \mathbb{E}[X_i(v_i)\phi_i(v_i)] = \min_{w_1, \ldots, w_n} \max_{\text{allocation}} \sum_i w_i \mathbb{E}[X_i(v_i)\phi_i(v_i)]
\]
Proof step 2: duality

$$\max_{\text{allocation}} \min_i \mathbb{E}[X_i(v_i)\phi_i(v_i)] = \min_{w_1,\ldots,w_n \text{ allocation}} \max \sum_i w_i \mathbb{E}[X_i(v_i)\phi_i(v_i)]$$
Proof step 2: duality

\[
\max_{\text{allocation}} \min_{i} \mathbb{E}[X_i(v_i)\phi_i(v_i)] = \min_{w_1,\ldots,w_n} \max_{\text{allocation}} \sum_i w_i \mathbb{E}[X_i(v_i)\phi_i(v_i)] = \min_{w_1,\ldots,w_n} \mathbb{E}[\max(\sum_i w_i \phi_i(v_i), 0)]
\]
Which agent has a higher weight?
Which agent has a higher weight? the “weaker” one
Which agent has a higher weight? the “weaker” one

Proposition

If ϕ_1 is smaller than ϕ_2 in the “hazard rate” order, then $w_1^* \geq w_2^*$.
Which agent has a higher weight? the “weaker” one

Proposition

If ϕ_1 is smaller than ϕ_2 in the “hazard rate” order, then $w_1^* \geq w_2^*$.

[Diagram showing interactions between seller, software company, CEO, and CTO with distributions for v_1 and v_2.]
Which agent has a higher weight? the “weaker” one

Proposition

If ϕ_1 is smaller than ϕ_2 in the “hazard rate” order, then $w_1^* \geq w_2^*$.
Which agent has a higher weight? the “weaker” one

Proposition

If ϕ_1 is smaller than ϕ_2 in the “hazard rate” order, then $w_1^* \geq w_2^*$.
Which agent has a higher weight? the “weaker” one

Proposition

If ϕ_1 is smaller than ϕ_2 in the “hazard rate” order, then $w_1^* \geq w_2^*$.
Which agent has a higher weight? the “weaker” one

Proposition

If ϕ_1 is smaller than ϕ_2 in the “hazard rate” order, then $w_1^* \geq w_2^*$.

![Diagram of seller and company interactions.]

- **Seller**
 - Sell at price 1 if CEO agrees

- **CEO**
 - Revenue = $\frac{7}{9}$

- **CTO**
 - Revenue = 0

- **Company**

 - Software
 - Money

 - $v_1 \sim U[0, 2]$
 - $v_2 \sim U[1, 3]$
Which agent has a higher weight? the “weaker” one

Proposition

If ϕ_1 is smaller than ϕ_2 in the “hazard rate” order, then $w_1^* \geq w_2^*$.

- **seller**
 - Sell at price 1 if **CEO** agrees
 - Revenue = $\frac{1}{2}$

- **company**
 - **CEO**
 - $v_1 \sim U[0, 2]$
 - **CTO**
 - $v_2 \sim U[1, 3]$

- Software

- Company money
Talk to us about these extensions and directions
Talk to us about these extensions and directions

Posted pricing is not even *approximately optimal*

Pareto efficient mechanisms

What if only one agent has to agree to mechanism (or half of them)?

What if agents *pay out of pocket*, but in *fixed shares*?

Correlated/interdependent values?
Single seller, single product, “single” buyer

- Posting a price is not optimal
Single seller, single product, “single” buyer

- Posting a price is not optimal
- Pay more attention to “weaker” agents
Single seller, single product, “single” buyer

- Posting a **price** is **not optimal**
- Pay **more attention** to “weaker” agents

The End!