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1. Lagrangian Interpolation

First let’s fix some notation. Let x1, . . . , xn ∈ R be distinct points,
and let y1, . . . , yn ∈ R be arbitrary values. The interpolation problem
for this data is to find a function f : R→ R which takes the prescribed
values at the points:

f(xi) = yi (i = 1, . . . , n).

Already in high school algebra, students want to solve the interpola-
tion problem. How can we find a function which takes the prescribed
values at the prescribed points? On the face of it this question is not
really very interesting: a function f : R→ R is an arbitrary assignment
of a value f(x) ∈ R for each x ∈ R, so we can for instance construct a
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function which has f(xi) = yi for all i by defining

f(x) =

{
yi if x = xi

0 otherwise.

There is nothing particular about the value 0 here; we can instead
(independently) assign whatever value we like at any points x different
from x1, . . . , xn. The set of all functions f : R → R is enormous, and
contains all kinds of nasty functions that no high schooler would be
happy with. Their graphs look like the static fuzz of an old TV screen.

Of course what the high schooler really wants to do is come up with
a “nice,” “named” function f : R → R that satisfies f(xi) = yi. They
don’t want an f defined piecewise, and hopefully f is differentiable.
For the interpolation problem to be interesting, we need to restrict the
class of functions that we are considering. The simplest, most natural
family of functions to look at are the polynomial functions.

1.1. Basics on polynomials, functions, and polynomial func-
tions.

Definition 1.1 (Polynomials). A polynomial p (with real coefficients)
is an expression of the form

p = anxn + ∙ ∙ ∙ + a1x + a0

where the ai ∈ R.
The set of all such polynomials is denoted by R[x]. We can add poly-

nomials coefficient-by-coefficient: if p =
∑n

i=0 aix
i and q =

∑m
i=0 bix

i,
then

p + q =

max{m,n}∑

i=0

(ai + bi)x
i.

The product of p and q is the polynomial

pq =
m+n∑

k=0

ckx
k with ck =

∑

i+j=k

aibj .

With these operations, the set R[x] is what is called a ring in algebra.
(Basically, this just means that the usual rules you are accustomed to
for addition and multiplication hold. For example, p(q + r) = pq + pr.)

Two polynomials p and q are equal iff they are given by the same
expression. In other words, their coefficients are equal.

Definition 1.2 (Functions). Let X and Y be sets. A function f :
X → Y assigns to each x ∈ X an element f(x) ∈ Y . Two functions
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f, g : X → Y are equal iff f(x) = g(x) for all x ∈ X. (This is just set
theory.)

Definition 1.3 (Real-valued functions). Let X be a set and consider
functions f : X → R. (A particularly interesting case is where also
X = R.) The set of all such functions is denoted by RX . We can use
the addition and multiplication operations on R to define addition and
multiplication operations on RX . Specifically, if f, g : X → R then we
define functions f + g and fg pointwise by the rules

(f + g)(x) := f(x) + g(x)

(fg)(x) := f(x)g(x).

With these operations, the set RX again becomes an example of a ring.

Definition 1.4 (Polynomial functions). Given a polynomial p ∈ R[x],
we can substitute a real value t ∈ R for the variable x. Thus if p =∑

aix
i, we can define a function f : R→ R by the rule

f(t) =
∑

ait
i.

The function f is called a polynomial function. It can be represented
by the polynomial p. The set of all polynomial functions is a subset of
RR, the set of all functions from R to R.

Warning 1.5. The polynomial p representing a polynomial function
f : R→ R is unique, but this requires proof. (See below.) In particular,
two polynomial functions f, g : R → R are equal if and only if the
polynomials p, q representing them are equal. Polynomial functions
f : R → R and polynomials p ∈ R[x] are “basically” the same thing,
but in more general contexts this requires some care.

Definition 1.6 (Degree). The degree of the polynomial p = anxn +
∙ ∙ ∙ + a0 is deg p = n if an 6= 0. We define deg 0 = −∞ by convention.
The degree of a polynomial function is the degree of a polynomial which
represents it.

Lemma 1.7 (Basic properties of degree). Let p, q ∈ R[x].

(1) We have deg(pq) = deg p + deg q.
(2) We have deg(p+ q) ≤ max{deg p, deg q}. If deg p 6= deg q, then

equality holds.

1.2. Lagrangian interpolation: existence. Back to our motivating
question. Let x1, . . . , xn ∈ R be distinct points, and let y1, . . . , yn ∈ R
be arbitrary values. How can we construct a polynomial function f :
R→ R such that f(xi) = yi for all i?
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First, let’s solve a special case of this problem. What if y1 = 1 and
all other yi = 0? We can easily arrange that a polynomial function f(x)
has f(xi) = 0 by giving it a factor of (x − xi). Thus, the polynomial
function

f(x) = (x − x2) ∙ ∙ ∙ (x − xn)

has f(xi) = 0 for i = 2, . . . , n, and f(x1) 6= 0. To get a value of 1 at
x1, we can just divide by the constant f(x1). Therefore

F1(x) =
(x − x2) ∙ ∙ ∙ (x − xn)

(x1 − x2) ∙ ∙ ∙ (x1 − xn)

is a polynomial function such that F1(x1) = 1 and F1(xi) = 0 for i 6= 1.
Similarly, we can define for each i a polynomial function Fi(x) by

the rule

Fi(x) =
n∏

j=1
j 6=i

(x − xj)

(xi − xj)
.

Then

Fi(xj) = δij :=

{
1 i = j

0 i 6= j.

We can piece these special solutions together to prove the following
theorem.

Theorem 1.8 (Lagrangian interpolation: existence). Let x1, . . . , xn ∈
R be distinct points, and let y1, . . . , yn ∈ R be arbitrary values. Then
there exists a polynomial function f : R → R of degree at most n − 1
such that f(xi) = yi.

Proof. In the notation preceding the statement, the function

n∑

i=1

yiFi

has the required properties. �

The basic method of proof used here was to first find a polynomial
that vanishes at all but one of the points, to construct a “characteristic
function” supported at just one of the points. Then it is a simple
matter to combine these various functions to get whatever value we
want at each of the points. This technique continues to be useful in
more general problems, as we will see.

Could there have been other solutions to the interpolation problem?
If we don’t bound the degree of the function, then yes. Notice that the
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polynomial (x − x1) ∙ ∙ ∙ (x − xn) vanishes at all the points x1, . . . , xn.
Therefore, if f(x) is any solution to the interpolation problem, then

f(x) + (x − x1) ∙ ∙ ∙ (x − xn)

is also a solution. More generally, if g is any polynomial, then

f(x) + (x − x1) ∙ ∙ ∙ (x − xn)g(x)

is also a solution. However, if deg f ≤ n − 1, then all these other
solutions have degree n or greater, so we have only constructed one
solution of degree at most n − 1.

1.3. The division algorithm. It can’t be overstated how important
the division algorithm is in the study of 1-variable polynomials. In
algebra terminology, R[x] is what is called a Euclidean domain, and it
is one of the simplest possible kinds of rings out there. This fact is
directly responsible for the simple story of Lagrangian interpolation.

Theorem 1.9 (The division algorithm). Let p,m ∈ R[x] with m 6=
0. Then there are unique polynomials q, r ∈ R[x] (the quotient and
remainder) with deg r < deg m such that

p = qm + r.

The proof of the theorem is essentially an analysis of the high school
algorithm for polynomial long division.

Proof. (Existence) First we show that we can find such polynomials q
and r. We go by (strong) induction on the degree of p. If deg p < deg m
we take q = 0 and r = p. Suppose deg p ≥ deg m and that the result
is known for polynomials p′ of degree deg p′ < deg p.

Since deg p ≥ deg m and m 6= 0, there is a monomial cxa such that

p′ := p − cxam

has degree < deg p. (Choose c and a to cancel the leading term of p.)
Then by induction we can write

p′ = q′m + r′ (deg r′ < deg m).

But then
p = p′ + cxam = (q′ + cxa)m + r′.

That is, if we put q = q′ + cxa and r′ = r, then

p = qm + r (deg r < deg m).

Therefore, it is possible to write p in the required way.
(Uniqueness) Suppose we can write

p = qm + r = q′m + r′
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where both r, r′ have degree less than deg m. Then

r − r′ = (q′ − q)m.

The LHS has degree < deg m. If q′ 6= q, the RHS has degree ≥ deg m.
Therefore, q′ = q, and so r = r′. Therefore the expression is unique. �

The division algorithm allows us to conclude that polynomials with
roots have a very special form.

Proposition 1.10. Suppose p ∈ R[x] is a polynomial, a ∈ R, and
p(a) = 0. Then x − a divides p: we can write p = (x − a)q for some
q ∈ R[x].

Proof. Use the division algorithm to divide p by x − a. We find that
there are polynomials q and r with p = (x − a)q + r, and deg r ≤ 0.
Therefore r is a constant. Plugging a in to both sides forces r = 0. �

Corollary 1.11. If a polynomial p ∈ R[x] of degree at most n − 1 has
n zeroes, then p = 0.

Proof. Suppose p(ai) = 0 for i = 1, . . . , n. Using the proposition re-
peatedly, we can write

p = (x − a1) ∙ ∙ ∙ (x − an)q

for some q ∈ R[x]. This forces either p = 0 or deg p ≥ n, but since
deg p ≤ n − 1 we conclude p = 0. �

Corollary 1.12. If the polynomial functions given by two polynomials
p, q are equal, then p = q.

Proof. The difference p−q has infinitely many zeroes, so p−q = 0. �

The consequences of the division algorithm allow us to immediately
settle the uniqueness question for Lagrangian interpolation.

Theorem 1.13 (Lagrangian interpolation: existence and uniqueness).
Let x1, . . . , xn ∈ R be distinct points, and let y1, . . . , yn ∈ R be arbitrary
values. There is a unique polynomial function f : R → R of degree at
most n − 1 such that f(xi) = yi for all i.

Proof. We already showed that such a function exists. Suppose f and
g are two such functions. Then f − g has n zeroes and degree at most
n − 1. Therefore f − g = 0 and f = g. �

We can also address the question of arbitrary solutions of the inter-
polation problem, without bounding the degree.
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Theorem 1.14 (Lagrangian interpolation: all solutions). Let
x1, . . . , xn ∈ R be distinct points, and let y1, . . . , yn ∈ R be arbitrary
values. Let f be a polynomial function such that f(xi) = yi for all i. If
g is any other polynomial function such that g(xi) = yi for all i, then
there is a unique polynomial q such that

g = f + (x − x1) ∙ ∙ ∙ (x − xn)q.

Thus, any solution to Lagrangian interpolation can be obtained from
a “particular solution” by adding on a multiple of (x−x1) ∙ ∙ ∙ (x−xn).

Proof. Use the division algorithm to divide g−f by (x−x1) ∙ ∙ ∙ (x−xn).
Then there are unique polynomials q, r with deg r < n such that

g − f = (x − x1) ∙ ∙ ∙ (x − xn)q + r.

Plugging in xi shows r(xi) = 0 for all i, and therefore r has n roots.
Therefore r = 0. �

1.4. Repeated points. In the statement of Lagrangian interpolation
we required all the points to be distinct. What happens in the limiting
scenario where two of the points “collide” with one another? Suppose
we have two points x1, x2 ∈ R and

x2 = x2(t) = x1 + t,

so that x2 depends on the parameter t in a linear way. As t → 0,
we have x2(t) → x1. Also suppose we have two values y1 and y2(t),
where y2 also depends on the parameter t. Suppose y2(t) ∈ R[t] is a
polynomial in t.

Now suppose we have for each time t a polynomial function

ft(x) = an(t)xn + an−1(t)x
n−1 + ∙ ∙ ∙ + a0(t)

such that

ft(x1) = y1

ft(x2(t)) = y2(t),

and suppose the ai(t) ∈ R[t] are polynomials in t.

Question 1.15. In this setup, what does the polynomial f0(x) “look
like?”

Example 1.16. Take x1 = 0, so x2(t) = t. Let y1 = 0 and y2(t) = t+t2.
There are many possible choices of the family ft(x) of polynomials; for
example, both

ft(x) = x + x2

ft(x) = (1 + t)x
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work. The time t = 0 polynomials are f0(x) = x + x2 and f0(x) = x,
respectively.

First observe that this setup forces that y2(0) = y1. Indeed, we have

y2(0) = f0(x2(0)) = f0(x1) = y1.

That is, as the points x1 and x2 collide, the values y1 and y2 also have
to collide in order for there to be a function which takes on value y1 at
x1 and value y2 at x2.

What is the derivative of f0 at x1? Intuitively, for any small time t
the polynomial ft takes value y1 at x1 and value y2(t) at x2 = x1 + t.
Therefore the graph of ft has a secant line passing between the points
(x1, y1) and (x1 + t, y2(t)). The slopes of these secant lines are

y2(t) − y1

(x1 + t) − x1

=
y2(t) − y2(0)

t
.

As t → 0 these slopes converge to the derivative y′
2(0), and thus we

should expect that the polynomial f0(x) has derivative y′
2(0) at x1! The

remarkable thing here is that the particular family of polynomials ft(x)
did not matter at all—all that matters is the way in which the value
y2(t) approaches y1.

Proposition 1.17. Let x1 ∈ R, write x2(t) = x1 + t, let y2(t) ∈ R[t],
and put y1 = y2(0). Suppose ft(x) =

∑n
i=0 ai(t)x

i for some ai(t) ∈ R[t].
If ft(x1) = y1 and ft(x2(t)) = y2(t), then

f ′
0(x1) = y′

2(0).

Proof. Without loss of generality, we may shift and translate the picture
so that x1 = 0 and y1 = 0. Then a0(t) = 0, so we can write ft(x) =
a1(t)x + a2(t)x

2 + ∙ ∙ ∙ , and

f ′
0(0) = a1(0).

Since y1 = 0 we can write y2(t) = b1t + b2t
2 + ∙ ∙ ∙ , so that y′

2(0) = b1.
We are given that ft(t) = y2(t). Plugging in t into ft(x), all the terms
are of degree ≥ 2 except for a1(0)t. Therefore a1(0) = b1, and f ′

0(0) =
y′

2(0). �

In other words, as two points collide together the limiting interpo-
lation problem is to specify the derivative of the polynomials at the
limiting point.
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1.5. Derivative data. Motivated by the previous computation, we
introduce a generalized version of Lagrangian interpolation that al-
lows for “repeated points.” Suppose we are given (still distinct)
points x1, . . . , xn, multiplicities m1, . . . ,mn, and for each point xi a
list yi,0, . . . , yi,mi−1 of mi values. We seek to find a polynomial f(x)
such that for each i and each 0 ≤ j ≤ mi − 1,

f (j)(xi) = yi,j .

Here f (j) denotes the jth derivative, as usual.
Thus, we are prescribing the value of f and its first mi − 1 deriva-

tives at the point xi. The original Lagrangian interpolation problem is
recovered when all the multiplicities are 1. The number of equalities
that f is required to satisfy is m1 + ∙ ∙ ∙ + mn.

To solve this version of the interpolation problem, you’ll first prove
a basic fact about polynomials.

Lemma 1.18. Let f ∈ R[x], a ∈ R, and let m ≥ 1. Then f (k)(a) = 0
for all 0 ≤ k ≤ m − 1 if and only if (x − a)m divides f .

Proof. Homework. �

Theorem 1.19 (Lagrangian interpolation with derivatives). With the
above setup, there exists a unique polynomial f(x) of degree at most∑

mi − 1 such that f (j)(xi) = yi,j for all i, j.

Proof. (Existence) As with ordinary Lagrangian interpolation, it is
helpful to focus on one point at a time. It will be enough to con-
struct a polynomial f(x) such that the values of the derivatives at the
first point are all correct, but the values of the derivatives at all of the
other points are 0. Then, to get the desired values at all the points we
can add together the solutions for each of these sub-problems.

If all the required derivatives of f at the points x2, . . . , xn vanish,
this means exactly that f is divisible by g := (x−x2)

m2 ∙ ∙ ∙ (x−xn)mn .
Let us consider the m1 different polynomials

fk(x) := (x − x1)
kg,

where 0 ≤ k ≤ m1 − 1. We claim that some linear combination

F = a0f0 + ∙ ∙ ∙ + am1−1fm1−1

satisfies F (k)(x1) = y1,k for each 0 ≤ k ≤ m1 − 1. Note that F has
degree at most

∑
mi − 1, as required.
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The list of equations F (k)(x1) = y1,k is a system of m1 linear equa-
tions in the m1 variables a0, . . . , am1−1. More precisely, it is the system

f0(x1)a0 + ∙ ∙ ∙ + fm1−1(x1)am1−1 = y1,0

f ′
0(x1)a0 + ∙ ∙ ∙ + f ′

m1−1(x1)am1−1 = y1,1

...

f
(m1−1)
0 (x1)a0 + ∙ ∙ ∙ + f

(m1−1)
m1−1 (x1)am1−1 = y1,m1−1.

Or, in matrix form,







f0(x1) ∙ ∙ ∙ fm1−1(x1)
f ′

0(x1) ∙ ∙ ∙ f ′
m1−1(x1)

...
. . .

...

f
(m1−1)
0 (x1) ∙ ∙ ∙ f

(m1−1)
m1−1 (x1)











a0
...

am1−1



 =







y1,0

y1,1
...

y1,m1−1





 .

But, our choice of the polynomials fk(x) makes this matrix have a very

simple form: since f
(i)
k (x1) = 0 for i < k, the matrix is lower triangular.

Furthermore, since fk is divisible by (x − x1) exactly k times, the
diagonal entries are nonzero. Then it is a simple matter to solve for the
coefficients ai by back-substitution: the first equation f0(x1)a0 = y1,0

lets us read off a0, then the second equation f ′
0(x1)a0 + f ′

1(x1)a1 = y1,1

gives us a1, and so in. Thus it is possible to find numbers a0, . . . , am1−1

such that F (k)(x1) = y1,k for each 0 ≤ k ≤ m1−1. And of course, since
g divides F all the required derivatives of F at the other points vanish.

As discussed at the beginning of the proof, we can carry about the
above procedure for each point xi and add the resulting solutions to
get the required polynomial.

(Uniqueness) Given two solutions f and g to the problem, the differ-
ence f −g has (f −g)(k)(xi) = 0 for all i and 0 ≤ k ≤ mi−1. Therefore∏

(x − xi)
mi divides f − g. But since the degree of f − g is at most∑

mi − 1, this is only possible if f − g = 0. Therefore f = g. �
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2. Linear Algebra: Vector Spaces

While we were able to solve the Lagrangian interpolation problem
with purely elementary techniques, linear algebra will give a unifying
framework of techniques that greatly simplifies the picture. In both
the original interpolation problem and the interpolation problem with
derivatives, the existence proof was relatively painful and the unique-
ness proof was relatively easy. In fact, with more knowledge and a
better point of view the existence proof can be seen to be essentially
unnecessary!

2.1. A note on fields. In section 1 we stated all our results for poly-
nomials over the real numbers. This is unnecessarily restrictive, and
there are good reasons to allow other fields. Algebraically closed fields,
(e.g. the field C of complex numbers) make the study of polynomial
factorization much easier. Finite fields (e.g. the field of integers mod
a prime p, Z/pZ) are frequently useful in number theory and cryptog-
raphy. In what follows we let K be an arbitrary field, but you should
feel free to think of K = R or C if it makes you happier. (The choice
of letter K is traditional: the German word for field is Körper).

2.2. Systems of linear equations. On a first approach, linear alge-
bra is fundamentally about the solution of systems of linear equations.
This is hopefully a review, but it is fundamental to everything that
follows so we have to be solid on it.

Consider a system of m linear equations in n unknowns

a11x1 + ∙ ∙ ∙ + a1nxn = b1

...

am1x1 + ∙ ∙ ∙ + amnxn = bm.

Here the numbers aij , bi ∈ K are constants, and we seek to find all
tuples (x1, . . . , xn) which satisfy all of the equations. It is customary
to encode this system in a vector equation as




a11 ∙ ∙ ∙ a1n
...

. . .
...

am1 ∙ ∙ ∙ amn








x1
...

xn



 =




b1
...

bm



 ,

or more compactly as

Ax = b,

where A is the m × n matrix (aij) and x ∈ Kn and b ∈ Km are
the evident vectors of length n and m, respectively. Thus, we seek to
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describe the solution set

{x ∈ Kn : Ax = b}.

Definition 2.1. The system Ax = b is called consistent if it has a
solution, and inconsistent otherwise.

2.2.1. Row echelon form and back-substitution. First let us study what
the solutions of the system Ax = b are in a case where the coefficient
matrix A has a particularly nice form. We say that the (i, j) entry (row
i, column j) is a pivot of A if aij = 1 and all the entries in row i left of
the (i, j) entry are zero.

Definition 2.2. Let A = (aij) be an m × n matrix, and suppose it
has exactly k nonzero rows. We say A is in row echelon form if every
nonzero row has a pivot, and they are in positions (1, `1), . . . , (k, `k),
where the sequence `1 < `2 < ∙ ∙ ∙ < `k is strictly increasing.

We say that the variables x`1 , . . . , x`k
corresponding the columns

where there are pivots are bound variables. The variables among
x1, . . . , xn which are not bound are free. The number k is the rank
of the matrix.

Note that if row i in the matrix A is all zeroes, then the system
Ax = b is inconsistent unless bi = 0. For row echelon matrices, the
consistency of the system can be read off using this observation. The
next result also explains the terminology of bound and free variables:
if the system is consistent, then the free variables can have their values
assigned arbitrarily and we can solve for the bound variables by back-
substitution.

Proposition 2.3. Suppose A is an m×n matrix in row echelon form,
and that A has rank k. Let b = (b1, . . . , bm) ∈ Km.

(1) The system Ax = b is consistent if and only if bk+1 = ∙ ∙ ∙ =
bm = 0.

(2) Suppose the system Ax = b is consistent. For each free variable
xi, let ci ∈ K be any constant. Then for each bound variable
xj there is a uniquely determined constant cj ∈ K such that the
vector c = (c1, . . . , cn) has Ac = b.

Proof. We saw before the proof that if Ax = b is consistent then bk+1 =
∙ ∙ ∙ = bm = 0.

Conversely, suppose bk+1 = ∙ ∙ ∙ = bm = 0, and assign arbitrary fixed
values to each of the free variables. Read off the system of equations
from the bottom up. The equations in rows k + 1 through m all say
0 = 0, so are satisfied.
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Suppose the pivots of A are in positions (1, `1), . . . , (1, `k). In row k,
the system reads

x`k
+ ak,`k+1x`k+1 + ∙ ∙ ∙ + anxn = bk.

But, all the variables x`k+1, . . . , xn are free, so we are seeking a solution
where those variables take the corresponding assigned values. Thus, we
know x`k

has to satisfy

x`k
+ ak,`k+1c`k+1 + ∙ ∙ ∙ + ancn = bk.

Thus the only possible value for x`k
is

x`k
= bk − (ak,`k+1c`k+1 + ∙ ∙ ∙ + ancn) =: c`k

,

so the value of x`k
has been forced on us.

Next, in row k − 1, we similarly read the equation

x`k−1
+ ak−1,`k−1+1x`k−1+1 + ∙ ∙ ∙ + anxn = bk−1.

The values of each of the variables other than x`k−1
are known (either

because they are free or because they were determined in the previous
step), and so the value of x`k−1

is readily determined.
Continuing in this fashion, we can uniquely determine the values the

bound variables which solve the system. �

Thus systems where the coefficient matrix are in row echelon form
are readily solved by back-substitution.

2.2.2. Gaussian elimination. The most important algorithm in linear
algebra allows us to convert a linear system Ax = b to a different linear
system A′x = b′ where A′ is in row echelon form and the solution set
is the same. Then since we know how to read off the solutions of a row
echelon system, we can solve a general system Ax = b.

Lemma 2.4 (Row operations). The solution set of a system Ax = b
is unchanged by the following transformations.

(1) Scale an equation by a nonzero constant.
(2) Add one equation to another.
(2’) Add a scalar multiple of one equation to another.
(3) Swap the position of two equations.

Proof. Let Ax = b denote the original system, and let A′x = b′ denote
the system obtained by performing one of the above operations. Let
S = {x ∈ Kn : Ax = b}, and let T = {x ∈ Kn : A′x = b′}. We need
to show that S = T in each case.

It is clear that operations (1) and (3) do not affect the solution set.
To see that operation (2) does not affect the solution set, notice

that if x ∈ S then x ∈ T . Indeed, if x satisfies two equations it also
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satisfies the sum of those two equations. Therefore S ⊂ T . Conversely,
if x ∈ T , we can see that x ∈ S since x will satisfy the difference of
any two equations in T , and we can transform our system back to the
original system by subtracting one equation from another. Therefore,
S = T .

Operation (2’) can be seen to be a combination of operations of type
(1) and (2), so it preserves the solution set. �

When the corresponding operations in the lemma are performed on
the coefficient matrix A, they are called elementary row operations.

Theorem 2.5 (Gaussian elimination). By using the operations of
Lemma 2.4, any system Ax = b can be replaced by a system A′x = b′

such that

(1) the solution sets are the same, and
(2) A′ is in row echelon form.

Proof. Call two matrices A and A′ row equivalent if you can obtain A′

from A by a sequence of elementary row operations.
Say that the reduction number of a matrix A is k if 0 ≤ k ≤ m is

the largest integer such that

(1) the first k rows of A are a row echelon matrix,
(2) any rows of zeroes in A are the last rows in the matrix, and
(3) if there are any nonzero entries of A in rows k + 1, . . . ,m, then

they lie to the right of the leading nonzero entry in row k.

Note that A is in row echelon form if and only if its reduction number
is m. Intuitively, the larger the reduction number, the closer A is to
being in row echelon form.

Now let A′ be any matrix which is row equivalent to A and such that
the reduction number of A′ is as large as possible. We claim that A′ is
actually in reduced row echelon form, i.e. its reduction number is m.

Suppose the reduction number of A′ is k < m. The rows k+1, . . . ,m
can’t all be zero, since then A′ is actually in row echelon form and its
reduction number is m. One of these rows has a leading nonzero entry
which is as far left as possible. Swap that row with row k + 1. Scalar
multiply row k + 1 so the leading entry is 1. This entry will be our
(k + 1)st pivot. Now for each row from k + 2 to m, subtract the
appropriate multiple of row k + 1 to clear the entries below the pivot.
The resulting matrix is row equivalent to A′ (and hence row equivalent
to A) and has reduction number at least k + 1. This contradicts our
choice of A′.

Thus by a sequence of elementary row operations we can convert A to
a row echelon form matrix A′. Performing the corresponding sequence
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of operations on the system of equations Ax = b, we get the required
system A′x = b′ with the same solution set. �

It is really hard to overstate how important the following fact is; we
will eventually have more impressive sounding versions of this state-
ment (see the “rank-nullity theorem”) but the core foundations of linear
algebra depend crucially on the next simple fact.

Theorem 2.6. Consider the homogeneous system of equations

a11x1 + ∙ ∙ ∙ + a1nxn = 0

...

am1x1 + ∙ ∙ ∙ + amnxn = 0

where aij ∈ K. If n > m, then this system has a nonzero solution.

Proof. Use Gaussian elimination to replace the system with an equiv-
alent system A′x = 0 where the coefficient matrix is in row echelon
form. (Notice that the RHS of the equation remains 0 after each row
operation.) The number of bound variables is then at most m, the
number of rows, since there is at most one pivot in each row. Then
there are at least n − m free variables. The system is consistent, so if
we assign values to the free variables (at least some of them nonzero)
then we can determine values of the bound variables that solve the
system. �

2.3. Polynomial interpolation and systems of equations. Fa-
miliar polynomial interpolation questions can be rephrased in terms of
solutions of linear systems of equations. For example, consider the orig-
inal Lagrangian interpolation question. Let x1, . . . , xn ∈ K be distinct
and let y1, . . . , yn ∈ K. Consider the problem of finding a polynomial
f ∈ K[x] of degree at most n − 1 such that f(xi) = yi for all i. Write
down a general polynomial of degree at most n − 1 as

f = an−1x
n−1 + ∙ ∙ ∙ + a0.

Then we want f to satisfy the system of n equations f(xi) = yi (i =
1, . . . , n). Written out more explicitly, we need to find an−1, . . . , a0 ∈ K
such that

an−1x
n−1
1 + ∙ ∙ ∙ + a0 = 0

an−1x
n−1
2 + ∙ ∙ ∙ + a0 = 0

...

an−1x
n−1
n−1 + ∙ ∙ ∙ + a0 = 0.
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Alternately, in matrix form, we want to solve







xn−1
1 ∙ ∙ ∙ x1 1

xn−1
2 ∙ ∙ ∙ x2 1
...

. . .
...

...
xn−1

n ∙ ∙ ∙ xn 1













an−1
...
a2

a0





 =







y1

y2
...

yn







(The matrix on the left is called a Vandermonde matrix ). We showed
that for any RHS vector y = (y1, . . . , yn) ∈ Kn there exists a unique
solution vector a = (an−1, . . . , a1) ∈ Kn. In other words, after a row
reduction the matrix on the left can be brought into a row echelon form
with n pivots (there can’t be any free variables). Notice that this last
fact depends on the assumption that x1, . . . , xn ∈ K are distinct: if
two of them are the same, then the matrix will have two rows that are
the same, and we can get a row of 0’s after a row reduction.

In this way we see that a polynomial can in many ways be regarded
as its list or vector of coefficients. We add two polynomials coefficient-
by-coefficient, so that the addition of polynomials behaves in the same
way as the addition of vectors. Since the conversion process between
polynomials and coefficient vectors is a bit annoying and not worth
repeating every time we need to do it, it is preferably to work with the
polynomials directly. The concept of a vector space will allow us to do
this.

2.4. Vector spaces. A vector space is an abstract algebraic structure
that shares many of the familiar properties of the n-dimensional Eu-
clidean space Kn.

Definition 2.7. Let K be a field, and let V be a set. Suppose there are
addition and scalar multiplication operations on V : for all v,w ∈ V
and λ ∈ K, there are elements v + w ∈ V and λ ∙ v ∈ V . Then V is a
vector space over K if the following axioms are satisfied.

(1) (V, +) is an abelian group:
(a) + is commutative: v + w = w + v for all v,w ∈ V .
(b) + is associative: (v+w)+u = v+(w+u) for all v,w,u ∈

V .
(c) There is an element 0 ∈ V such that v + 0 = v for all

v ∈ V .
(d) For any v ∈ V , there is some w ∈ V such that v + w = 0.

(2) The operation ∙ is compatible with the addition, in the sense
that
(a) 1 ∙ v = v for all v ∈ V , and
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(b) λ(v + w) = λv + λw and (λ + μ)v = λv + μv for all
λ, μ ∈ K and v,w ∈ V .

The #1 most important example is Euclidean space.

Theorem 2.8. Give Kn the usual operations of vector addition and
scalar multiplication:

(v1, . . . , vn) + (w1, . . . , wn) = (v1 + w1, . . . , vn + wn)

λ ∙ (v1, . . . , vn) = (λv1, . . . , λvn)

Then Kn is a vector space over K.

Proof. Since K is a field, its addition and multiplication satisfy the
field axioms. All the axioms for a vector space are inherited from the
field axioms for K. For example, let’s check λ(v + w) = λv + λw.

Let λ ∈ K and let v,w ∈ Kn. Then we can write

v = (v1, . . . , vn)

w = (w1, . . . , wn).

Now

λ(v + w) = λ((v1, . . . , vn) + (w1, . . . , wn))

= λ(v1 + w1, . . . , vn + wn)

= (λ(v1 + w1), . . . , λ(vn + wn))

= (λv1 + λw1, . . . , λvn + λwn)

= (λv1, . . . , λvn) + (λw1, . . . , λwn)

= λ(v1, . . . , vn) + λ(w1, . . . , wn)

= λv + λw.

The rest of the verifications are left as an exercise. �

For our purposes, spaces of polynomials give the next most important
examples.

Theorem 2.9. Let K[x] be the ring of polynomials in x with coeffi-
cients in K. Then K[x] is a vector space over K, with the evident
operations.

Let d ≥ 0, and let V ⊂ K[x] be the subset of polynomials of degree at
most d. Then V is a vector space over K, with the evident operations.

Proof. For the first part, you have to check the axioms directly. The
second part is better proved after we have the concept of a subspace.

�
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Example 2.10. If d ≥ 0, the set of polynomials in x of degree d is not
a vector space. Indeed, there is no additive identity for addition.

Example 2.11. The previous theorem has obvious generalizations, for
example to multivariable polynomials.

Remark 2.12. The definition of a vector space has several immediate
consequences, such as the following:

(1) The additive identity 0 ∈ V is unique.
(2) For v ∈ V , the additive inverse w ∈ V of v is unique. Call it

−v. (Parts (1) and (2) don’t discuss the scalar multiplication,
and are more generally true for any abelian group.)

(3) We have −v = (−1) ∙ v for all v ∈ V .
(4) We have 0 ∙ v = 0 for all v ∈ V .

If these facts are not familiar you should prove them.

Theorem 2.13. Let X be a set, and let V = KX be the set of all
functions f : X → K. Give V the operations of pointwise addition and
scalar multiplication. Then X is a vector space.

Proof. Check the axioms directly. �

2.5. Subspaces. As we saw in the previous section, there are a few
main examples of vector spaces—Euclidean spaces, polynomials, and
spaces of functions. Most other vector spaces that come up (e.g. the
space of polynomials of degree ≤ d) arise as subsets of these big known
examples, and this makes the verification of the vector space axioms
much easier in these cases.

Definition 2.14. Let (V, +, ∙) be a vector space, and let W ⊂ V be
a subset. Then W is a subspace of V if the following properties are
satisfied:

(1) The zero vector 0 ∈ V is in W .
(2) (Closed under +) For all w1,w2 ∈ W , we have w1 + w2 ∈ W .
(3) (Closed under ∙) For all w ∈ W and λ ∈ K, we have λ ∙w ∈ W .

The axioms in the definition of a subspace ensure that the addition
and scalar multiplication operations on V make sense as operations on
W : if we add two vectors in W we get a vector in W , and if we scalar
multiply a vector in W by a scalar, we get a vector in W .

Remark 2.15. The empty subset ∅ ⊂ V is not a subspace! (Why?)

Theorem 2.16. Let V be a vector space, and let W ⊂ V be a subspace.
Then W is a vector space when given the operations from V .
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Proof. Again you have to check that W satisfies the axioms of a vector
space. Each of the axioms for W follows from the same axiom for V .

To do one, let us show that the addition on W is commutative. To
be pedantic, let’s write the operations on V as (V, +V , ∙V ) and the
operations on W as (W, +W , ∙W ). The definition of the operations on
W is that if w,w1,w2 ∈ W and λ ∈ K then

w1 +W w2 := w1 +V w2

λ ∙W w := λ ∙V w.

(We add and scalar multiply the vectors in W as if they are in V .)
Now we can check

v +W w = v +V w

= w +V v

= w +W v.

The other axioms are proved similarly. �

Example 2.17. For d ≥ 0, let V ⊂ K[x] be the subset of polynomials
of degree d. Then V is a subspace of K[x], so it is a vector space in its
own right. Indeed, a sum of two polynomials of degree ≤ d has degree
≤ d, a scalar multiple of a polynomial of degree ≤ d has degree ≤ d,
and the zero polynomial has degree ≤ d.

Example 2.18. The main source of subspaces of Kn comes from solu-
tions of homogeneous systems of linear equations. Consider a system

Ax = 0

of m equations in n unknowns x = (x1, . . . , xn). If x,x′ ∈ Kn are two
solutions of the system, then x + x′ and λx are also solutions. Also,
the zero vector is a solution. Thus

{x ∈ Kn : Ax = 0} ⊂ Kn

is a subspace of Kn.
(The converse: every subspace V ⊂ Kn can be expressed as the set

of solutions of a homogeneous system of linear equations, is also true,
but best approached later.)

Example 2.19. Subspaces of polynomials can be constructed by con-
sidering evaluations, derivatives, and other constructions. For example,
the subset

V = {f(x) ∈ K[x] : f(1) = f(2) = f ′(3) = 0} ⊂ K[x]

is a subspace, as you should verify.
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2.6. Span and spanning sets. It is convenient to specify vector
spaces or subspaces by specifying certain vectors that can be combined
to form an arbitrary vector.

Example 2.20. In Kn, every vector can be written in the form

(x1, . . . , xn) = x1(1, 0, . . . , 0)+ ∙ ∙ ∙+xn(0, . . . , 0, 1) = x1e1 + ∙ ∙ ∙+xnen,

where ei is the ith unit vector.

Example 2.21. In K[x], every vector can be written in the form

f(x) = a0 + a1x + ∙ ∙ ∙ + anxn

for some n.

Example 2.22. Let U ⊂ K[x] be the subspace of polynomials

U = {f ∈ K[x] : f(1) = 0} ⊂ K[x].

Every polynomial in U can be expressed in the form (x − 1)g(x) for
some polynomial g. Writing g out explicitly, we can write f in the form

a0(x − 1) + a1(x − 1)x + a2(x − 1)x2 + ∙ ∙ ∙ + an(x − 1)xn.

Thus the polynomials (x − 1)xk (k ≥ 0) suffice to describe all the
“degrees of freedom” in U .

Example 2.23. Some of the vectors can be redundant. For example,
there are lots of different ways of writing a linear polynomial ax + b as
a sum of multiples of x, 1, and 1 + x. E.g.

2x + 1 = 2 ∙ x + 1 ∙ 1 + 0 ∙ (x + 1) = 1 ∙ x + 0 ∙ 1 + 1 ∙ (x + 1).

These examples motivate the definitions of linear combinations and
spans.

Definition 2.24. Let V be a vector space. A linear combination of
vectors v1, . . . , vn ∈ V is any expression of the form

λ1v1 + ∙ ∙ ∙ + λnvn

where λi ∈ K.

Definition 2.25. Let S ⊂ V be any subset. The span of S is the set
of all linear combinations of vectors in S. More formally,

span(S) = {λ1v1 + ∙ ∙ ∙ + λnvn : vi ∈ S and λi ∈ K}.

Remark 2.26. By convention the empty sum is always in span(S), so
for example span(∅) = {0}.
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Proposition 2.27. Let V be a vector space and let S ⊂ V be a subset.
The span span(S) is a subspace of V . Furthermore, it is the smallest
subspace of V that contains S: if U ⊂ V is any subspace that contains
S, then span(S) ⊂ U .

Proof. Exercise. �

Closely related to the idea of a span is the concept of a spanning set.

Definition 2.28. A subset S ⊂ V is said to span V if span(S) = V .
(Or, it is a spanning set.)

Loosely speaking, all the “directions” in V have to be describable by
vectors in S in order for S to span V .

Example 2.29. A set S ⊂ V is always a spanning set of span(S).

Example 2.30. The standard unit vectors e1, . . . , en are a spanning
set of Kn. If any of these vectors are removed, they will fail to span
Kn.

The space K2 can be spanned by (1,−1) and (1, 1).

Example 2.31. The polynomials 1, x, x2, . . . are a spanning set of
K[x]. So are the polynomials 1, (x − 1), (x − 1)2, . . .. (Why?)

2.7. Operations on subspaces. Let V be a vector space. There are
various ways of constructing new subspaces from old ones.

Proposition 2.32. The intersection of any collection of subspaces of
V is a subspace of V .

Proof. Exercise. �

Example 2.33. The union of subspaces is usually not a subspace; it
is rare that such a union is closed under addition. (Consider R2 with
the two subspaces given by the coordinate axes.)

If U,W ⊂ V are two subspaces of V then the sum U + W is the
subset

U + W = {u + w : u ∈ U,w ∈ W} ⊂ V.

More generally, given a collection {Wα}α∈A of subspaces of V , the sum
of the Wα is the set

∑

α∈A

Wα :=

{
∑

α∈A

λαwα : wα ∈ Wα and λα ∈ K

}

⊂ V.

(If the index set A is infinite, we require that all but finitely many of
the coefficients λα are 0. Thus, there is no issue with convergence of
the sum.)
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Proposition 2.34. We have

∑

α∈A

Wα = span

(
⋃

α∈A

Wα

)

.

Therefore,
∑

α∈A Wα is the smallest subspace of V that contains each
of the subspaces Wα.

Proof. Exercise. �

A sum U + W ⊂ V of two subspaces is called an (internal) direct
sum if every vector v ∈ U + W is uniquely expressible in the form
v = u+w for some u ∈ U and w ∈ W . In this case, it is customary to
write U +W = U ⊕W . More generally, a finite sum U1 + ∙ ∙ ∙+Un ⊂ V
of subspaces U1, . . . , Un ⊂ V is direct if every vector v ∈ U1 + ∙ ∙ ∙+ Un

is uniquely expressible as u1 + ∙ ∙ ∙ + un for some ui ∈ Ui.

Example 2.35. In Kn, let Ui = span(ei). Then Kn = U1 ⊕ ∙ ∙ ∙ ⊕ Un.

Example 2.36. In K[x], call a polynomial f ∈ K[x] even if f(−x) = x
and odd if f(−x) = −x. There are subspaces U ⊂ K[x] and V ⊂
K[x] consisting of even and odd polynomials, respectively. Then U =
span(1, x2, x4, . . .) and V = span(x, x3, x5, . . .). We have K[x] = U⊕V .

When we are considering two subspaces there is a simple criterion
to tell if the sum is direct.

Lemma 2.37. Let U,W ⊂ V be subspaces of the vector space V . Then
the sum U + W is direct if and only if U ∩ W = {0}.

Proof. Exercise. �

Example 2.38. The analogous statement for 3 or more subspaces is
false. For example, in R2 consider the subspaces given by the two
coordinate axes and the line y = x.

2.8. Linear independence. The notion of linear independence cap-
tures what it means for a collection of vectors to all point “in different
directions.”

Definition 2.39. Let V be a vector space. A list v1, . . . , vn ∈ V of
vectors is linearly independent if the only constants λ1, . . . , λn ∈ K
such that

λ1v1 + . . . + λnvn = 0

are λ1 = ∙ ∙ ∙ = λn = 0. Otherwise, the list is linearly dependent.
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Example 2.40. In Kn, the list of vectors e1, . . . , en is linearly inde-
pendent. If some vectors are removed from this list, the resulting list
is still linearly independent.

In K2, the list of vectors (1, 1), (1,−1) is independent. The list of
vectors (1, 0), (1, 1), (1,−1) is not linearly independent.

Example 2.41. In K[x], the list of vectors 1, x, . . . , xn is independent
for any n ≥ 0.

The next result establishes an alternative criterion for linear depen-
dence.

Lemma 2.42. Let v1, . . . , vn ∈ V . Then this list is linearly dependent
if and only if one of the vectors can be written as a linear combination
of the others.

Proof. (⇒) Since the vectors are dependent, we can find a linear com-
bination

λ1v1 + ∙ ∙ ∙ + λnvn = 0

where at least one of the coefficients is nonzero. Without loss of gen-
erality, suppose λ1 6= 0. Then we can rearrange the equation and find

v1 = −
1

λ1

(λ2v2 + ∙ ∙ ∙ + λnvn) = −
λ2

λ1

v2 − ∙ ∙ ∙ −
λn

λ1

vn.

(⇐) An equation

v1 = λ2v2 + ∙ ∙ ∙ + λnvn

which expresses one of the vectors as a linear combination of the others
can be rearranged to

(−1) ∙ v1 + λ2v2 + ∙ ∙ ∙ + λnvn = 0.

Since the coefficient of v1 is nonzero, we conclude the list is linearly
dependent. �

The most important consequence of linear independence is that a
vector in the span of a linearly independent list is uniquely expressible
as a linear combination of the vectors in the list.

Proposition 2.43. Let v1, . . . , vn ∈ V be linearly independent. If
w ∈ span(v1, . . . , vn), then w can be written as a linear combination
of v1, . . . , vn in exactly one way.

Proof. Since w ∈ span(v1, . . . , vn), we can write it as a linear combi-
nation

w = λ1v1 + ∙ ∙ ∙ + λnvn.
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Suppose it can also be written as

w = μ1v1 + ∙ ∙ ∙ + μnvn.

Subtracting these two equations from each other,

0 = (λ1 − μ1)v1 + ∙ ∙ ∙ + (λn − μn)vn.

Since v1, . . . , vn are independent, this requires λi − μi = 0, and so
λi = μi. �

We can give an inductive description of what it means for a list
v1, . . . , vn of vectors to be independent:

(1) A list v1 of length 1 is independent iff v1 6= 0.
(2) Suppose the list v1 is independent. The list v1,v2 is indepen-

dent iff v2 is not a scalar multiple of v1.
(3) Suppose the list v1,v2 is independent. The list v1,v2,v3 is

independent iff v3 is not a linear combination of v1 and v2.
(4) Continue...

The justification for the inductive step is the following.

Proposition 2.44 (Building independent sets). Suppose v1, . . . , vn ∈
V . Then v1, . . . , vn is linearly independent if and only if v1, . . . , vn−1

is independent and

vn /∈ span(v1, . . . , vn−1).

Proof. (⇒) Suppose v1, . . . , vn ∈ V are independent. It is clear from
the definition that a sublist of an independent list is independent; there-
fore v1, . . . , vn−1 are independent. We know vn is not a linear combi-
nation of the other vectors, so also vn /∈ span(v1, . . . , vn−1).

(⇐) Suppose v1, . . . , vn−1 ∈ V are independent and vn /∈
span(v1, . . . , vn−1). Let λi ∈ K be such that

λ1v1 + ∙ ∙ ∙ + λnvn = 0.

Then

−λnvn = λ1v1 + ∙ ∙ ∙ + λn−1vn−1.

Since vn /∈ span(v1, . . . , vn−1), the only way this is possible is if λn =
0. But then since v1, . . . , vn−1 are independent we must also have
λ1 = ∙ ∙ ∙ = λn−1 = 0. Therefore all the λi are zero, and v1, . . . , vn are
independent. �
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2.9. Bases. A list of vectors v1, . . . , vn ∈ V spans V if every vector
in V can be written as a linear combination of vectors in the list. If
the list is also independent, then every vector in V can be written as
a linear combination of the vectors in one and only one way. Thus we
are able to record an arbitrary vector in V by the corresponding linear
combination.

Definition 2.45. A list v1, . . . , vn ∈ V is a basis of V if it is a linearly
independent spanning list.

Corollary 2.46. If v1, . . . , vn ∈ V is a basis of V , then every vector
w ∈ V can be written uniquely as a linear combination of v1, . . . , vn.

Example 2.47. In Kn, the standard unit vectors e1, . . . , en are a basis.
In K2, the vectors (1, 3),(2, 4) are a basis. Every vector (x, y) in K2

can be uniquely described as a linear combination

(x, y) = a(1, 3) + b(2, 4).

Example 2.48. Let V ⊂ K[x] be the subspace of polynomials of
degree at most d. Then the vectors 1, x, x2, . . . , xd are a basis of V .
Can you give another basis of V ?

Example 2.49. The vector space K[x] does not have a basis of any
given finite length n. Indeed, it does not even have a finite spanning set.
Suppose f1, . . . , fn ∈ K[x]; then any linear combination λ1f1+∙ ∙ ∙+λnfn

has degree at most maxi deg fi, so no polynomials of degree higher than
this are in span(f1, . . . , fn).

It is possible to generalize the concept of basis to lists of infinite
length, and then 1, x, x2, . . . is a basis of K[x]. But, we will mostly be
concerned with finite bases and so won’t develop this theory.

When does a vector space have a (finite) basis? A necessary condition
is that the space has a finite spanning set.

Definition 2.50. A vector space V is finite-dimensional if it can be
spanned by a finite list of vectors.

Given a spanning set, any linear dependencies can be “pruned away”
to yield a basis.

Proposition 2.51. If V is a vector space and v1, . . . , vn ∈ V span V ,
then we can construct a basis of V by deleting some (possibly 0) of the
vectors in the list.

Proof. If v1, . . . , vn are independent then they are a basis and we are
done. So, suppose they are depdendent. Without loss of generality,
the vector vn is a linear combination of the other vectors. Then the



26 J. HUIZENGA

list v1, . . . , vn−1 still spans V . Indeed, given w ∈ V , we can write it as
a linear combination

w = λ1v1 + ∙ ∙ ∙ + λnvn,

and we can also write vn as a linear combination

vn = μ1v1 + ∙ ∙ ∙ + μn−1vn−1.

Substituting this expression for vn in the expression for w and rear-
ranging, we find that w is a linear combination of v1, . . . , vn−1.

Now since v1, . . . , vn−1 still spans V , either it is a basis or we can
repeat the above process. Eventually this process stops (there are only
finitely many vectors in the list), and that means we have arrived at a
basis. �

Corollary 2.52. Every finite-dimensional vector space has a basis.

Proof. Shrink any spanning set to a basis. �

Conversely, for a finite-dimensional vector space, any independent
set can be extended to a basis.

Proposition 2.53. Let V be a finite-dimensional vector space and let
v1, . . . , vn ∈ V be independent. Then this list can be extended to a basis
v1, . . . , vn,u1, . . . , um ∈ V of V .

Proof. Exercise. �

2.10. Dimension. We have arrived at one of the fundamental concepts
and results in linear algebra. Roughly speaking, the dimension of a
vector space should be the number of independent parameters it takes
to specify a vector. More precisely, it should be the number of vectors
in a basis.

Unfortunately, while we now know that every finite dimensional vec-
tor space has a basis, it is not clear that any two bases have the same
number of vectors in them. This is a major theorem which has several
approaches; we will appeal to our earlier study of Gaussian elimination.

Lemma 2.54. Suppose v1, . . . , vm ∈ Kn and m > n. Then the list
v1, . . . , vm is linearly dependent.

Proof. Write the vectors v1, . . . , vm as column vectors in the matrix

A = (v1| ∙ ∙ ∙ |vm).

The vectors are dependent if and only if there are constants
x1, . . . , xm ∈ K, not all zero, such that x1v1 + ∙ ∙ ∙+ xnvn = 0. Equiva-
lently, the vector (x1, . . . , xm) satisfies the system Ax = 0. But this is
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a linear system of n equations in m > n unknowns, so it has a nonzero
solution. �

Proposition 2.55. If a vector space V has an independent list
v1, . . . , vm and a spanning list w1, . . . , wn, then m ≤ n.

Proof. By way of contradiction, assume m > n. Since w1, . . . , wn

span V , we can write each of the vectors vj as a linear combination of
w1, . . . , wn. Explicitly, write

vj = a1jw1 + ∙ ∙ ∙ + anjwn.

Consider the vectors in Kn made from the coefficients of each of these
expressions:

u1 = (a11, . . . , an1)

u2 = (a12, . . . , an2)

...

um = (a1m, . . . , anm).

These are m vectors in Kn, so there is an equation of linear depen-
dence

λ1u1 + ∙ ∙ ∙ + λmum = 0

with the λi not all 0.
I claim that also

λ1v1 + ∙ ∙ ∙ + λmvm = 0.

This will imply that v1, . . . , vm are dependent, a contradiction. Expand
out the left hand side and gather the coefficients of the wi:

λ1v1 + ∙ ∙ ∙ + λmvm = λ1(a11w1 + ∙ ∙ ∙ + an1wn)

+ λ2(a12w1 + ∙ ∙ ∙ + an2wn)

...

+ λm(a1mw1 + ∙ ∙ ∙ + anmwn)

= (λ1a11 + ∙ ∙ ∙ + λma1m)w1

...

+ (λ1an1 + ∙ ∙ ∙ + λmanm)wm.

Here we notice that the coefficient of wi is exactly the ith entry of the
vector λ1u1 + ∙ ∙ ∙+ λmum = 0. Therefore all the coefficients are 0, and
λ1v1 + ∙ ∙ ∙ + λmvm = 0 follows. �
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Corollary 2.56. In a finite-dimensional vector space V , any two bases
have the same length.

Proof. Supose v1, . . . , vm and w1, . . . , wn are bases of V . Then
v1, . . . , vm is independent and w1, . . . , wn spans V , so m ≤ n. By
symmetry, n ≤ m and m = n. �

Thus, the next definition is justified.

Definition 2.57. The dimension dim V of a finite-dimensional vector
space V is the length of any basis.

Example 2.58. We have dim Kn = n.

2.11. More examples of dimension. Various spaces of polynomials
give several additional examples of vector spaces where the dimension
can be computed.

Example 2.59. Let V ⊂ K[x] be the subspace of polynomials of
degree at most d. Then dim V = d + 1. Indeed, this vector space has
a basis 1, x, . . . , xd.

Example 2.60 (Spaces of homogeneous polynomials). Let V =
K[x0, . . . , xn] be the vector space of polynomials in x0, . . . , xn. A poly-
nomial f ∈ V in n + 1 variables is homogeneous of degree d if every
monomial which appears in f with a nonzero coefficient has degree d.
For example,

x2
0x1 + x3

1 + 2x2
1x2 + x2x

2
3

is homogeneous of degree 3 in the four variables x0, x1, x2, x3. Ob-
serve that a sum of two polynomials which are homogeneous of the
same degree is again homogeneous of that degree, unless the sum is 0.
Therefore, for a fixed integer d ≥ 0 there is a subspace

Vd = {f ∈ V : f is homogeneous of degree d} ∪ {0} ⊂ V.

This subspace has a basis given by the collection of monomials
xd0

0 ∙ ∙ ∙ xdn
n of degree d (so

∑
di = d).

Therefore, the dimension of this subspace is the number of monomials
of degree d. How many are there? This number can be computed by
a standard combinatorial argument called stars and bars. Suppose we
are given a string that consists of d stars and n bars, written in some
order. Here are some examples for d = 7 and n = 3:

|| ∗ ∗ ∗ | ∗ ∗ ∗ ∗ | ∗ ∗ ∗ | ∗ ∗| ∗ ∗ ∗ ∗ ∗ | ∗ | ∗ ∗| ∗ .

Such an expression determines and is determined by a monomial of
degree d: The exponent on variable xi is the number of stars between
bar i and bar i + 1. (We label the variables from 0 to n and label the
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bars from 1 to n. The exponent on x0 is the number of stars left of
bar 1, and the exponent on xn is the number of stars right of bar n.)
Thus, the above expressions correspond to the monomials

x3
2x

4
3 x3

1x
2
2x

2
3 x3

0x1x
2
2x3,

respectively.
Conversely, given a monomial it is easy to write down the stars-and-

bars diagram that corresponds to it, so we have a bijection between
the set of monomials of degree d in n + 1 variables and the number of
stars-and-bars diagrams with d stars and n bars.

How many stars-and-bars diagrams are there with d stars and n
bars? Imagine we start with a string of d + n stars. Then we just have
to change n of those stars to bars; the number of ways of doing this is
equal to the number of n-element subsets of a set of cardinality d + n.
So, the number of diagrams is

(
d + n

n

)

=
(d + n)!

d! ∙ n!
.

We conclude

dim(K[x0, . . . , xn])d =

(
d + n

n

)

.

So far we’ve mostly talked about vector spaces of polynomials of
degree ≤ d. These spaces have a simple relationship to spaces of ho-
mogeneous polynomials.

Example 2.61 (Multivariable polynomials of bounded degree). For
an integer d ≥ 0, consider the space V ⊂ K[x1, . . . , xn] of polynomials
of degree ≤ d in n variables x1, . . . , xn. Given a polynomial f ∈ V , its
homogenization is the polynomial obtained by taking each monomial
in f and multiplying it by an appropriate power of a new variable x0

to get a monomial of degree d. More formally, the homogenization of
f is the polynomial

F (x0, . . . , xn) := xd
0f

(
x1

x0

, . . . ,
xn

x0

)

(Why is this actually a polynomial?) Conversely, given a homogeneous
polynomial of degree d in x0, . . . , xn, we can set x0 = 1 to get a poly-
nomial in x1, . . . , xn of degree ≤ d.

For example, the homogenization of

f(x1, . . . , x3) = x2
1 + 2x2 + 3x1x3 + x4

3

to a homogeneous polynomial of degree 4 is

F (x0, . . . , x4) = x2
0x

2
1 + 2x3

0x2 + 3x2
0x1x3 + x4

3.
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Observe that we can recover f from F by setting x0 = 1.
Now the space V has a basis given by the monomials x1, . . . , xn of

degree ≤ d. Each such monomial uniquely determines a monomial in
x0, . . . , xn of degree d. Therefore the number of basis vectors is the
number of monomials in x1, . . . , xn of degree d, and so

dim V =

(
d + n

n

)

by our earlier computation.

2.12. Solving linear systems, take 2. Our earlier discussion of the
solution of systems of linear equations can now be discussed more con-
ceptually. First consider a homogeneous linear system Ax = 0, where
A = (aij) is an m × n matrix and x = (x1, . . . , xn) ∈ Kn.

Remark 2.62. In an earlier example and your homework, you saw
that the set of solutions

U = {x ∈ Kn : Ax = 0}

is a subspace of Kn.

Problem 2.63. Compute a basis (and thus the dimension) of U .

By our study of Gaussian elimination, we may as well assume A is in
row echelon form, since row operations do not change the solution set
U of the system. Once A is in row echelon form, we identify the sets
of bound and free variables. We know that if we assign values to the
free variables, then there are uniquely determined values for the bound
variables which solve the system.

To give a basis of U , it is useful to assign the values of the free vari-
ables in an intelligent way. Suppose the free variables are x`1 , . . . , x`k

.
For the free variable x`i

, construct a solution vi of the system by setting
the value of x`i

to be 1, setting the value of all the other free variables
to be 0, and determining the values of the bound variables by requiring
that the vector solve the system.

Example 2.64. For the row echelon matrix

A =




1 3 0 2
0 0 1 1
0 0 0 0





the variables x2 and x4 are free, while x1 and x3 are bound. (In the
notation before the example, we could put `1 = 2 and `2 = 4, so that
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the free variables are x`1 , x`2 .) Then we construct two solution vectors
v1 and v2 by starting from

v1 =







1

0





 v2 =







0

1







(leaving blank spaces for the bound variables) and using back substi-
tution on the system Ax = 0 to determine the remaining entries:

v1 =







−3
1
0
0





 v2 =







−2
0
−1
1





 .

Observe that these vectors are linearly independent.

Theorem 2.65. The vectors v1, . . . , vk are a basis of U . In particular,
every solution of the system Ax = 0 can be uniquely written in the form

x = a1v1 + ∙ ∙ ∙ + akvk

for some ai ∈ K. The dimension of U is k, the number of free variables.

Proof. We show that v1, . . . , vk are linearly independent and span U .
(Independent) Suppose a1, . . . , ak ∈ K are such that

a1v1 + ∙ ∙ ∙ + akvk = 0.

Then the entry in slot `i of the LHS vector is just ai, by the definition
of the vectors vj . Therefore all the ai must be zero, and the vectors
are independent.

(Spanning) Suppose x ∈ U is an arbitrary solution of the system.
Let ai be the `i-th entry of xi, and consider the vector

w = a1v1 + ∙ ∙ ∙ + akvk.

Notice that x and w are the same in all the entries corresponding to
free variables. But the solution of Ax = 0 that has particular values
assigned to the free variables is unique. Therefore x = w, and x is in
the span of v1, . . . , vn. �

In the general case of a potentially inhomogeneous system Ax = b,
recall that the system is either consistent or inconsistent, and that we
can use Gaussian elimination to determine which possibility is true. If
there is one solution p, then any other solution p′ satisfies

A(p′ − p) = 0,
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so that h := p′ − p is a solution of the homogeneous system Ah = 0.
We know how to express solutions h of the homogeneous system, so we
arrive at the following description of the solutions of the inhomogeneous
system.

Theorem 2.66. The system Ax = b is either consistent or inconsis-
tent. If it is consistent, let p be one solution to the system. Then any
solution p′ of Ax = b can be written uniquely in the form

p′ = p + a1v1 + ∙ ∙ ∙ + akvk,

where v1, . . . , vk are a basis of the space U of solutions to the homoge-
neous system

Ax = 0.
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3. Linear Algebra: Linear Transformations

The central concept in linear algebra is the notion of a linear transfor-
mation. Roughly speaking, a linear transformation between two vector
spaces is a function that preserves the vector space operations. Linear
transformations allow us to study the relationships between different
vector spaces. Many important questions in mathematics that sound
like they have nothing to do with linear algebra can actually be phrased
in terms of vector spaces and linear transformations.

3.1. Linear transformations. Let V and W be vector spaces over
the same field K.

Definition 3.1. A linear transformation from V to W is a function
T : V → W which preserves the vector space operations. That is, for
all v,v′ ∈ V and λ ∈ K, we have

T (v + v′) = T (v) + T (v′)

T (λv) = λT (v).

Remark 3.2. It is customary to write Tv instead of T (v) so long as
no confusion will occur.

There are many important examples.

Example 3.3. The function T : K2 → K3 defined by

T (x, y) = (3x + y, 2y, x + y)

is a linear transformation. Indeed, if (x, y), (x′, y′) ∈ K2, then

T ((x, y) + (x′, y′)) = T (x + x′, y + y′)

= (3(x + x′) + (y + y′), 2(y + y′), (x + x′) + (y + y′))

= ((3x + y) + (3x′ + y′), 2y + 2y′, (x + y) + (x′ + y′))

= (3x + y, 2y, x + y) + (3x′ + y′, 2y′, x′ + y′)

= T (x, y) + T (x′, y′).

A similar argument shows that T preserves scalar multiplication.

Example 3.4. More generally, if A = (aij) is an m × n matrix with
entries in K, then we can define a linear transformation T : Kn → Km

by the rule

Tx = Ax :=




a11x1 + ∙ ∙ ∙ + a1nxn

...
am1x1 + ∙ ∙ ∙ + amnxn



 ,

where x = (x1, . . . , xn). The proof is essentially the same as in the
previous example. Notice that Tei is the ith column of A.
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Example 3.5. Let θ ∈ R. The function Rθ : R2 → R2 which rotates
a vector by an angle of θ is a linear transformation. Indeed, if we add
two vectors and then rotate the result by θ, we get the same answer as
if we rotate the two vectors by θ and add the results. (Draw a picture,
recalling that vectors are added tip-to-tail.)

Example 3.6. For a vector space of polynomials, we can use facts
about polynomials to define interesting linear transformations. Let
Pd ⊂ K[x] denote the vector space of polynomials of degree ≤ d.

There is a derivative transformation

D : Pd → Pd−1

p(x) 7→ p′(x).

There are evaluation transformations, for example evaluation at 1:

T : Pd → K

p(x) 7→ p(1).

We can simultaneously evaluate at several points:

T : Pd → K3

p(x) 7→ (p(1), p(3), p(7)).

We can evaluate p and some of its derivatives at some points:

T : Pd → K4

p(x) 7→ (p(2), p′(2), p(5), p′′′(6)).

We can send a polynomial to its list of coefficients:

T : Pd → Kd+1

∑

i

aix
i 7→ (a0, a1, . . . , ad)

We can take the integral from 0 to x:

T : Pd → Pd+1

p(x) 7→
∫ x

0

p(t) dt

(Note that a function p(x) 7→
∫

p(x) dx is ambiguous, since there is a
constant of integration...).

We can make new linear transformations from old ones by several
common operations.
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Proposition 3.7. Let T, T ′ : V → W and S : W → U be linear trans-
formations. Then T +T ′ (defined pointwise) is a linear transformation,
as is λT (defined pointwise) and the composition S ◦ T : V → U .

In fact, linear transformations give us new examples of vector spaces
as well.

Proposition 3.8. Let V and W be vector spaces over K. The set
Hom(V,W ) of all linear transformations from V to W is a vector space
over K when given the operations of pointwise sum and scalar multi-
plication.

3.2. Constructing linear transformations. The mantra of linear
transformations is that “a linear transformation is uniquely determined
by its action on a basis.” More precisely, we have the following theorem.

Theorem 3.9. Let V and W be vector spaces over K, and suppose
V is finite-dimensional. Let v1, . . . , vn ∈ V be a basis of V , and let
w1, . . . , wn ∈ W be arbitrary vectors. Then there is a unique linear
transformation T : V → W such that

Tvi = wi.

If we are willing to dispense with uniqueness, the hypotheses can be
weakened:

Proposition 3.10. Let V and W be vector spaces over K, and suppose
V is finite-dimensional. Let v1, . . . , vn ∈ V be a linearly independent
list, and let w1, . . . , wn ∈ W be arbitrary vectors. Then there is a linear
transformation T : V → W such that

Tvi = wi (i = 1, . . . , n).

Both of these results look like interpolation problems! We are finding
some “nice function” which takes the specified points (vectors in V ) to
the specified values (vectors in W ).

Remark 3.11. In the proposition, if you are comfortable with Zorn’s
Lemma then the finite-dimensional hypothesis is not necessary. The
theorem is also true without the finite-dimensional hypothesis if you
define what a basis of an infinite-dimensional space is.

We prove the theorem first.

Proof of Theorem 3.9. First suppose T : V → W is a linear transfor-
mation that satisfies Tvi = wi for i = 1, . . . , n. Then by linearity we
must have

T (a1v1 + ∙ ∙ ∙ + anvn) = a1w1 + ∙ ∙ ∙ + anwn
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for any ai ∈ K.
Since any vector v ∈ V can be uniquely expressed as a linear com-

bination

v = a1v1 + ∙ ∙ ∙ + anvn,

this suggests that we should define a function T : V → W by the rule

T (a1v1 + ∙ ∙ ∙ + anvn) = a1w1 + ∙ ∙ ∙ + anwn.

Clearly Tvi = wi. Since any linear transformation satisfying Tvi =
wi must satisfy this rule, there is at most one linear transformation
satisfying Tvi = wi for i = 1, . . . , n.

We have to show that this function T : V → W is actually linear.
So, let v,v′ ∈ V . Then we can write

v = a1v1 + ∙ ∙ ∙ + anvn

v′ = b1v1 + ∙ ∙ ∙ + bnvn,

so

T (v + v′) = T ((a1v1 + ∙ ∙ ∙ + anvn) + (b1v1 + ∙ ∙ ∙ + bnvn))

= T ((a1 + b1)v1 + ∙ ∙ ∙ + (an + bn)vn)

= (a1 + b1)w1 + ∙ ∙ ∙ + (an + bn)wn

= (a1w1 + ∙ ∙ ∙ + anwn) + (b1w1 + ∙ ∙ ∙ + bnwn)

= T (a1v1 + ∙ ∙ ∙ + anvn) + T (b1v1 + ∙ ∙ ∙ + bnvn)

= T (v + v′).

The proof that T (λv) = λTv for λ ∈ K is similar. Therefore T is
linear. �

The proposition is an easy application of the theorem.

Proof of Proposition 3.10. Extend the independent list to a basis
v1, . . . , vn,u1, . . . , uk of V . Then by the theorem there is a linear trans-
formation T : V → W such that Tvi = wi and Tui = 0 (actually we
can send the ui’s to whatever vectors we want). �

3.3. The matrix of a linear transformation. Since a linear trans-
formation is uniquely specified by its action on a basis, we can record
a linear transformation by just remembering what it does to a basis.
Matrices can be used to conveniently record this information.

Suppose V and W are finite dimensional vector spaces with bases
v1, . . . , vn ∈ V and w1, . . . , wm ∈ W , respectively. Let T : V → W be
a linear transformation. For each basis vector vj , the vector Tvj is some



POLYNOMIAL INTERPOLATION 37

vector in W , and therefore it can be written as a linear combination of
the basis vectors wi. Explicitly, write

Tvj = a1jw1 + ∙ ∙ ∙ + amjwm.

Then the coefficients aij (1 ≤ i ≤ m, 1 ≤ j ≤ n) contain all the
information needed to specify the linear transformation. We put them
into a matrix

A =










a11 ∙ ∙ ∙ a1j ∙ ∙ ∙ a1n
...

...
...

ai1 ∙ ∙ ∙ aij ∙ ∙ ∙ ain
...

...
...

am1 ∙ ∙ ∙ amj ∙ ∙ ∙ amn










.

Remark 3.12. The information needed to determine Tvj is contained
in the jth column of the matrix A. More specifically, the entry aij is
the coefficient of wi when Tvj is expressed as a linear combination of
the basis vectors w1, . . . , wm.

Note that the matrix A representing T very much depends on the
bases used to record vectors in V and W ! The matrix of T can be a
useful tool for computing T . If v ∈ V , express v as a linear combination

v = x1v1 + ∙ ∙ ∙ + xnvn

of the basis vectors on V . Let x = (x1, . . . , xn) be the vector of coeffi-
cients and let y = Ax. Write y = (y1, . . . , ym). Then we have

Tv = y1w1 + ∙ ∙ ∙ + ymwm.

Thus, multiplying the matrix A by the vector x computes the coeffi-
cients when the vector w is expressed as a linear combination of the
basis vectors w!, . . . , wm on W .

Exercise 3.13. Justify the assertions in the previous paragraph.

3.4. Injectivity and surjectivity; kernel and image. Let T : V →
W be a linear transformation. A common problem is to determine if for
w ∈ W the equation Tv = w has a solution. When it has a solution,
we often want to know if that solution is unique.

Recall that a function of sets f : X → Y is injective (or 1-1 ) if
whenever f(x1) = f(x2) for some x1, x2 ∈ X, we must have x1 = x2.
The image of f is the subset

Im f = {f(x) : x ∈ X} ⊂ Y,

and f is surjective (or onto) if Im f = Y . Equivalently, for every y ∈ Y ,
there must exist some x ∈ X such that f(x) = y. The function f is
bijective if it is injective and surjective.
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A linear transformation T : V → W is in particular a function from
V to W , so the concepts of injective/surjective/bijective and images
make sense for linear transformations. The next definition makes use
of the vector space structure.

Definition 3.14. Let T : V → W be a linear transformation. The
kernel of T is the subset

ker T = {v ∈ V : Tv = 0} ⊂ V.

Proposition 3.15. Let T : V → W be a linear transformation. Then
ker T is a subspace of V , and Im T is a subspace of W .

Proof. (Important) Exercise. Check the three subspace axioms. �

Clearly T is surjective if and only if Im T = W . In case W is
finite-dimensional, this is equivalent to the statement that dim Im T =
dim W , by the next result.

Lemma 3.16. Suppose V is a finite-dimensional vector space and W ⊂
V is a subspace. Then dim W ≤ dim V , with equality if and only if
W = V .

Proof. From your homework, W is finite-dimensional. Let
w1, . . . , wm ∈ W be a basis of W . This is a linearly independent list in
V , so it can be extended to a basis of V . Therefore dim W ≤ dim V ,
with equality if and only if w1, . . . , wm is already a basis of V ; in that
case, V = W . �

The dimension of the image occurs very frequently, and deserves its
own name.

Definition 3.17. The rank of a linear transformation is dim Im T .

Thus if W is finite-dimensional, then T : V → W is surjective if and
only if its rank is dim W . On the other hand, kernels give us a simple
criterion for injectivity.

Proposition 3.18. Let T : V → W be a linear transformation. Then
T is injective if and only if ker T = {0}.

Proof. First suppose T is injective; we show ker T = {0}. Suppose
v ∈ ker T . Then Tv = 0 and T0 = 0, so Tv = T0. Since T is
injective, this gives v = 0. Therefore 0 is the only vector in ker T , and
ker T = {0}.

Conversely, suppose ker T = {0}, and suppose v,v′ ∈ V have Tv =
Tv′. Then

0 = Tv − Tv′ = T (v − v′),
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so v − v′ ∈ ker T . Therefore v − v′ = 0, and v = v′. Therefore T is
injective. �

Since the only vector space of dimension 0 is the zero vector space,
this can be rephrased as saying T is injective iff dim ker T = {0}.

Definition 3.19. The nullity of a linear transformation T : V → W
is dim ker T .

The notions of injectivity and surjectivity are also related to the
concepts of spanning and independent sets, as the next exercise shows.

Exercise 3.20. Let T : V → W be a linear transformation.

(1) Show that T is injective if and only if it carries independent
lists to independent lists. (That is, for every independent list
v1, . . . , vn ∈ V , we have that Tv1, . . . , Tvn are independent.)

(2) Suppose that V is finite dimensional. Show that T is surjective
if and only if it carries spanning lists to spanning lists.

(3) Show by example that (2) is not true for infinite dimensional
vector spaces.

3.5. The rank-nullity theorem. The rank-nullity theorem is one of
the most fundemantal theorems in linear algebra. It connects the study
of the image of a linear transformation to the study of its kernel. Taken
to its extreme, this connects the study of surjectivity of linear transfor-
mations to the the study of injectivity of linear transformations. When
a linear transformation is thought of as a matrix and the corresponding
systems of linear equations, this connects the existence and uniqueness
problems for solutions of linear equations.

Theorem 3.21 (Rank-nullity theorem). Let T : V → W be a linear
transformation, and suppose V is finite-dimensional. Then

dim V = dim ker T + dim Im T.

Proof. Write U = ker T ⊂ V . Since U is a subspace of
a finite-dimensional vector space, it is finite-dimensional and it
has a basis u1, . . . , uk. This basis can be extended to a basis
u1, . . . , uk,v1, . . . , v` ∈ V of V . To prove the theorem, we must show
Im T has a basis of length `. To this end, we claim that Tv1, . . . , Tv`

are a basis of Im T . We show they are independent and span Im T .
(Independent.) Suppose

a1Tv1 + ∙ ∙ ∙ + a`Tv` = 0.

Then
T (a1v1 + ∙ ∙ ∙ + a`v`) = 0,
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so v := a1v1 + ∙ ∙ ∙ + a`v` is in ker T . Therefore we can write v as a
linear combination

a1v1 + ∙ ∙ ∙ + a`v` = b1u1 + ∙ ∙ ∙ + bkuk.

This is only possible if all ai, bj are zero, so Tv1, . . . , Tv` are indepen-
dent.

(Spanning.) Suppose w ∈ Im T . Then there is some v ∈ V such
that Tv = w. Express v as a linear combination of basis vectors

v = a1u1 + ∙ ∙ ∙ + akuk + b1v1 + ∙ ∙ ∙ + b`v`.

Applying T to both sides and recalling Tui = 0, we get

w = Tv = T (a1u1 + ∙ ∙ ∙ akuk + b1v1 + ∙ ∙ ∙+ b`v`) = b1Tv1 + ∙ ∙ ∙+ b`Tv`.

Therefore w is a linear combination of Tv1, . . . Tv`. �

The rank-nullity theorem has many immediate consequences.

Corollary 3.22. Suppose T : V → W is a linear transformation and
V is finite-dimensional. Then

dim ker T ≥ dim V − dim W.

In particular, if dim V > dim W , then T is not injective.

Proof. Since Im T is a subspace of W , we have dim Im T ≤ dim W .
Then we have

dim ker T = dim V − dim Im T ≥ dim V − dim W.

If dim V > dim W , we conclude ker T is positive-dimensional, and so
is nonzero. �

A similar argument proves the next result.

Corollary 3.23. Suppose T : V → W is a linear transformation and
V is finite-dimensional. Then dim V ≥ dim Im T . In particular, if
dim V < dim W , then T is not surjective.

Proof. Exercise. �

Corollary 3.24. Suppose T : V → W is a linear transformation and
dim V = dim W (and both are finite). Then T is injective iff it is
surjective iff it is bijective.

Proof. Write down the rank-nullity theorem:

dim W = dim V = dim ker T + dim Im T.

Then T is injective iff ker T = 0 iff dim ker T = 0 iff dim Im T = dim W
iff Im T = W iff T is surjective. �
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3.6. Applications to interpolation. The rank-nullity theorem and
ideas from linear algebra enable us to give slick new “non-constructive”
proofs of many of the results from Section 1. A general theme is that
for theoretical reasons it can be easier to compute the kernel of a linear
transformation than it is to compute the image. But, by the rank-
nullity theorem, if we know the dimension of the kernel then we know
the dimension of the image.

Here we give new proofs of the main theorems from Section 1.

Theorem 3.25 (Division algorithm). Let p,m ∈ R[x] with m 6= 0.
Then there are unique polynomials q, r ∈ R[x] (the quotient and re-
mainder) with deg r < deg m such that

p = qm + r.

Proof. Let Vd be the vector space of polynomials of degree ≤ d. Sup-
pose deg p = d and deg m = e. Define a linear transformation

T : Vd−e × Ve−1 → Vd

T (q, r) = qm + r.

(Check T is linear.) Note that Vd−e × Ve−1 and Vd have the same
dimension; the theorem claims that T is a bijection. By a corollary of
the rank-nullity theorem, it is enough to show that T is injective.

Suppose (q, r) ∈ ker T . Then qm + r = 0, so

−r = qm.

The LHS has degree ≤ e − 1. If q 6= 0, then the RHS has degree ≥ e.
Therefore q = 0 and r = 0. So, ker T = {(0, 0)} and T is injective. �

Theorem 3.26 (Lagrangian interpolation: all solutions). Let
x1, . . . , xn ∈ K be distinct, and let y1, . . . , yn ∈ K. Suppose d ≥ n − 1.
Then there is a polynomial f(x) ∈ K[x] of degree at most d such that
f(xi) = yi. Furthermore, if g is any other such polynomial, then there
is a polynomial q such that

g = f + (x − x1) ∙ ∙ ∙ (x − xn)q.

Proof. Again let Vd be the vector space of polynomials of degree ≤ d.
Define a linear transformation

T : Vd → Kn

Tf = (f(x1), . . . , f (xn))

(Check T is linear.) Let us compute the kernel of T .
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If f ∈ ker T , then f(xi) = 0 for all i. Therefore, by the division
algorithm (and its corollaries in Section 1) it follows that (x−x1) ∙ ∙ ∙ (x−
xn) divides f . Thus

ker T = {(x − x1) ∙ ∙ ∙ (x − xn)q : q ∈ Vd−n},

and ker T has a basis given by the polynomials (x − x1) ∙ ∙ ∙ (x − xn)xi

(i = 0, . . . , d−n). (If d = n−1 then the basis is empty and ker T = {0}.)
Therefore,

dim ker T = d − n + 1.

By the rank-nullity theorem,

d + 1 = dim Vd = dim ker T + dim Im T = d − n + 1 + dim Im T,

and therefore dim Im T = n. Therefore T is surjective, and the equation
Tf = y has a solution f . Any two solutions f and g of the equation
differ by an element of ker T , since T (f − g) = 0. The description of
an arbitrary solution follows. �

Theorem 3.27 (Lagrangian interpolation with derivatives: all solu-
tions). Let x1, . . . , xn ∈ K be distinct, let m1, . . . ,mn be positive inte-
gers, and for each i let yi,0, . . . , yi,mi−1 ∈ K. Let N =

∑
mi, and sup-

pose d ≥ N − 1. Then there is a polynomial f(x) ∈ K[x] of degree at
most d such that f (j)(xi) = yi,j for all i = 1, . . . , n and j = 0, . . . ,mi−1.
Furthermore, if g is any other such polynomial, then there is a unique
polynomial q such that

g = f + (x − x1)
m1 ∙ ∙ ∙ (x − xn)mnq.

Proof. Carry out the same procedure as in the proof of the previous
result, this time using the linear transformation T : Vd → KN defined
by

Tf = (f (0)(x1), . . . , f
(m1−1)(x1),

f (0)(x2), . . . , f
(m2−1)(x2),

...

f (0)(xn), . . . , f (mn−1)(xn)). �
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4. Multivariate interpolation: the Hilbert function

The general theme of single variable interpolation is that results can
be proven for arbitrary points x1, . . . , xn ∈ K in the domain: if the
points are somehow “special” then it is not really any easier or harder
to solve the interpolation problem. This changes dramatically in several
variables.

4.1. Interpolation in the plane and the Hilbert function. In
this subsection, let R = K[x, y] be the polynomial ring in two variables
and let Vd ⊂ K[x, y] be the subspace of polynomials of degree at most
d. Consider a collection of distinct points p1, . . . , pn ∈ K2, so each
pi = (xi, yi) is an ordered pair, and let z1, . . . , zn ∈ K be values.

Problem 4.1. Can we find a polynomial f ∈ Vd such that f(pi) = zi

for i = 1, . . . , n?

It is easy to rephrase this question in terms of linear algebra. Define
an evaluation transformation

T : Vd → Kn

Tf = (f(p1), . . . , f (pn)).

The dimension of Vd is
(

d+2
2

)
, since Vd has a basis given by the mono-

mials xiyj of degree ≤ d, and there are
(

d+2
2

)
of them. Then by the

results in Chapter 3, we can make several immediate observations.

• If
(

d+2
2

)
< n, then for some choice of values z1, . . . , zn ∈ K there

is no solution f to the problem. Indeed, T is not surjective, and
any vector z = (z1, . . . , zn) ∈ Kn which is not in the image of
T is a list of values that cannot be achieved by any polynomial.

• If
(

d+2
2

)
= n, then if there is a solution to the problem for any

list z1, . . . , zn ∈ K, then that solution is unique. Conversely, if
the only f ∈ Vd with f(pi) = 0 (i = 1, . . . , n) is f = 0, then the
problem has a unique solution for any list z1, . . . , zn. In other
words, T is surjective if and only if it is injective.

• If
(

d+2
2

)
> n, then for a list of values z1, . . . , zn ∈ K there may

or may not be a solution to the problem. If there is a solution
f , then it is not unique: we have ker T 6= 0, and adding an
element of ker T to f provides additional solutions. (In fact,
every solution to Tf = z can be obtained in this way.

In general, the problem of describing all the possible lists z ∈ Kn

of values such that the interpolation problem Tf = z has a solution is
not terribly interesting; this is the problem of computing the image of
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a linear transformation, and it can be done by standard linear algebra
techniques.

On the other hand, more qualitative analysis (e.g., is it injective or
surjective? What is its rank?) of the map T is very interesting and
deeply connected with the geometric configuration of the collection of
points p1, . . . , pn. We thus switch our attention to this program.

Problem 4.2 (Interpolation problem: enlightened version). Let Z =
{p1, . . . , pn} ⊂ K2 be a collection of n distinct points in the plane. For
an integer d ≥ 0, what is the rank of the evaluation map

TZ,d : Vd → Kn

TZ,d(f) = (f(p1), . . . , f (pn))?

In particular, is the map TZ,d either injective or surjective?

The answer to the problem is encoded in the Hilbert function.

Definition 4.3. Let Z = {p1, . . . , pn} ⊂ K2 be a collection of n dis-
tinct points in the plane. The Hilbert function of Z is the function

hZ : N→ N

hZ(d) = rk TZ,d.

Some simple properties are worth discussing now, before we study a
bunch of examples:

Proposition 4.4. Let Z = {p1, . . . , pn} ⊂ K2 be a collection of n ≥ 1
distinct points in the plane. The Hilbert function hZ(d) satisfies the
following properties.

(1) hZ(0) = 1.
(2) For each d ≥ 0,

hZ(d) ≤ min

{(
d + 2

2

)

, n

}

(3) The Hilbert function is increasing: if d ≤ e, then hZ(d) ≤
hZ(e).

(4) If d is sufficiently large, then hZ(d) = n. In fact, if d ≥ n − 1
then hZ(d) = n.

Proof. (1) Since V0 is just the constant polynomials, the image of TZ,0 :
V0 → Kn has basis given by the vector (1, . . . , 1).

(2) The rank of the linear transformation TZ,d : Vd → Kn. is bounded
by the rank of the domain and the rank of the codomain.

(3) Notice that if d ≤ e, then Vd ⊂ Ve is a subspace. Consider the
linear transformations TZ,e : Ve → Kn and TZ,d : Vd → Kn. Then if
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f ∈ Vd, we have TZ,e(f) = TZ,d(f). Therefore, we have a containment
Im TZ,d ⊂ Im TZ,e, and it follows that hZ(d) ≤ hZ(e).

(4) By (3), it is enough to show that hZ(d) = n for some d ≥ 0.
The statement that hZ(d) = n means that the linear transformation
TZ,d : Vd → Kn is surjective. One way to show that TZ,d is surjective is
to show that the image of TZ,d contains the standard basis e1, . . . , en

of Kn. In other words, for each i = 1, . . . , n we need to construct a
polynomial f ∈ Vd such that f(pi) = 1 but f(pj) = 0 for j 6= i. Since
we can scale a polynomial, it is actually good enough to construct a
polynomial f ∈ Vd such that f(pi) 6= 0 but f(pj) = 0 for j 6= i. The
next lemma shows that so long as d ≥ n − 1, we can do this. �

Lemma 4.5. Let p ∈ K2 and let q1, . . . , qn−1 ∈ K2 be points different
from p. Then there is a polynomial f ∈ Vn−1 such that f(p) 6= 0 and
f(qi) = 0.

Proof. Suppose p = (a, b) and q1 = (x1, y1). Since p 6= q1, either a 6= x1

or b 6= y1. Then either the vertical line x = x1 through q1 or the
horizontal line y = y1 through q1 does not pass through p. Let L1 ∈ V1

be the equation of one of these lines that does not pass through p1 (so
that L1 is either x − x1 or y − y1).

Repeat this procedure for each of the points q1, . . . , qn−1 to find lines
L1, . . . , Ln−1 such that Li passes through qi but does not pass through
p. Then the product L1 ∙ ∙ ∙Ln−1 is the desired polynomial. �

Remark 4.6. Linear transformations T : V → W such that

dim Im T = min{dim V, dim W}

are said to have maximal rank, since the inequality

dim Im T ≤ min{dim V, dim W}

is always true. If T has maximal rank, then it is either injective (if
dim Im T = dim V ) or surjective (if dim Im T = dim W ) or both (if
dim Im T = dim V = dim W ). Conversely, if T has maximal rank, then
it is either injective or surjective (or both).

4.2. The Hilbert function: examples. In this section we discuss
the Hilbert function of some collections of points in the plane.

Example 4.7 (2 points). Let Z = {p, q} ⊂ K2 be two points in the
plane. The Hilbert function of Z is

hZ(d) =

{
1 d = 0

2 d ≥ 1.

This follows directly from our general results in the previous section.
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Example 4.8 (3 noncollinear points). Let Z = {p, q, r} ⊂ K2 be three
points in the plane which are not collinear. Then hZ(0) = 1. Consider
TZ,1 : V1 → K3. By definition, there is no degree 1 polynomial that
vanishes on Z, so ker TZ,1 = {0}. Since dim V1 = 3, we find that TZ,1

is a bijection. Therefore,

hZ(d) =

{
1 d = 0

3 d ≥ 1.

Example 4.9 (3 collinear points). Let Z = {p, q, r} ⊂ K2 be three
points in the plane which are collinear. Then hZ(0) = 1. Consider
TZ,1 : V1 → K3. Since Z lies on a unique line, we have dim ker TZ,1 = 1,
and therefore TZ,1 has rank 2 by the rank-nullity theorem. We also
know hZ(2) = 3 by general principles. So,

hZ(d) =






1 d = 0

2 d = 1

3 d ≥ 2.

Example 4.10 (4 points, not all on a line). Let Z = {p, q, r, s} ⊂ K2

be four points in the plane which do not all lie on the same line. As
in the example of 3 noncollinear points, we find that hZ(0) = 1 and
hZ(1) = 3.

We claim that hZ(2) = 4. To do this, we can show that TZ,2 is
surjective by constructing polynomials that map to the standard basis
vectors of K4. Without loss of generality, we construct a polynomial
of degree ≤ 2 that is nonzero at p and zero at q, r, s.

If the line L = qr does not pass through p, then let M be a line that
passes through s and not p. Then LM is the desired polynomial of
degree ≤ 2.

Next suppose the line L = qr does pass through p. By assumption, it
does not pass through s. Then the line M = qs does not pass through
p. Let M ′ be any line through r that does not pass through p. Then
MM ′ is the desired polynomial of degree ≤ 2.

We conclude that

hZ(d) =






1 d = 0

3 d = 1

4 d ≥ 2.

Example 4.11 (4 collinear points). Let Z = {p, q, r, s} ⊂ K2 be
four collinear points. As in the case of three collinear points, we have
hZ(0) = 1 and hZ(1) = 2.
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Consider the map TZ,2 : V2 → K4. The kernel consists of the degree
2 polynomials that vanish on the 4 points. Actually, a degree 2 poly-
nomial which vanishes on 4 collinear points must be divisible by the
equation L = 0 of the line (see the next proposition). Thus any element
of ker TZ,2 can be written in the form L ∙ q for some q ∈ V1. It follows
that ker TZ,2 has a basis given by Lx, Ly, L, and so dim ker TZ,2 = 3.
Therefore rk TZ,2 = 3, and the Hilbert function is

hZ(d) =






1 d = 0

2 d = 1

3 d = 2

4 d ≥ 3.

Proposition 4.12. Let p1, . . . , pd+1 ∈ K2 be d + 1 collinear points in
the plane, and let L = 0 be the defining equation of the line. If a
polynomial f ∈ Vd of degree at most d vanishes at p1, . . . , pd+1, then f
is divisible by L.

Proof. By making a linear change of coordinates, we may as well assume
the points p1, . . . , pd+1 all lie on the x-axis y = 0. Say pi = (xi, 0). The
polynomial f(x, 0) of x has d + 1 roots since f(xi, 0) = 0. Since the
degree of f(x, 0) is at most d, it must be the zero polynomial. This
means that every monomial of f(x, y) has a y in it, and therefore y
divides f . �

4.3. The Hilbert function of “random” points. As we saw in the
previous section, if Z ⊂ K2 is a collection of n points which have some
special relationship with one another (e.g. they are collinear), then
the Hilbert function hZ(d) can be complicated. At the other extreme,
if there are no interesting relationships between the points, then we
should be able to easily compute the Hilbert function.

Definition 4.13. A collection Z ⊂ K2 of n points is in boring position
if

hZ(d) = min

{(
d + 2

2

)

, n

}

for all d ≥ 0. In other words, the map TZ,d has maximal rank for all
d ≥ 0.

In this section, we will show that for any n ≥ 1 there is a collection
Z ⊂ K2 of n points in boring position.

Example 4.14. In the previous section we showed several collections
of points are in boring position. Any two points in K2 are in boring
position. Three points in K2 are in boring position iff they are not
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collinear. Four points in K2 are in boring position iff they are not
collinear.

Note that points in boring position aren’t necessarily as boring as
possible: if we have four points in K2 with exactly three on a line,
then the Hilbert function is the same as for a more random collection
of points.

Theorem 4.15. For any n ≥ 1, there is a collection Z ⊂ K2 of n
points in boring position.

Proof. The proof is by induction on n. The Hilbert function of a single
point Z = {p} is constant hZ(d) = 1.

Suppose there is a collection Z ′ ⊂ K2 of n − 1 points in boring
position, and let p ∈ K2 be some point of K2 not in Z ′. We determine
conditions on p that ensure that Z = Z ′ ∪ {p} is in boring position.

Let D ≥ 0 be the first integer such that hZ′(D) = n − 1 <
(

D+2
2

)
.

Then for d < D, we have hZ′(d) =
(

d+2
2

)
. Then the map TZ′,d : Vd →

Kn−1 is injective. Clearly TZ,d : Vd → Kn is also injective, since if
TZ,d(f) = 0 then also TZ′,d(f) = 0, so that ker TZ,d ⊂ ker TZ′,d. There-
fore

hZ(d) =

(
d + 2

2

)

= min

{(
d + 2

2

)

, n

}

for d < D.
Degree D is more interesting, and requires that we be careful about

how the point p is chosen. Let U = ker TZ′,D ⊂ VD be the subspace
of polynomials of degree at most D which vanish on Z ′. Observe that
U 6= {0}, since

(
D + 2

2

)

= dim VD = dim U + n − 1

so that

dim U =

(
D + 2

2

)

− n + 1 > 0.

Pick some polynomial 0 6= f ∈ U . Then by an old homework problem,
we can find some point p ∈ K2 such that f(p) 6= 0. Then the subspace

U(−p) = {f ∈ U : f(p) = 0} ⊂ U

is a proper subspace of U . Its dimension can be computed by observing
that there is a surjective linear transformation

S : U → K1

Sf = f(p)

with kernel U(−p). Therefore dim U(−p) = dim U − 1.
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Finally, consider the map TZ,D : VD → Kn. Clearly ker TZ,D =
U(−p). Therefore

rk TZ,D = dim VD − dim U(−p) =

(
D + 2

2

)

− dim U + 1 = n,

and hZ(D) = n. Since hZ(d) is increasing and bounded by n, we
conclude hZ(d) = n for all d ≥ D. �

In a sense, almost every collection of points is in boring position: if a
collection of points does something interesting, it is an “accident.” To
phrase this phenomenon more rigorously, we have to introduce some
more terminology from algebraic geometry.
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5. Algebraic geometry: varieties in affine space

We now turn to studying algebraic geometry in earnest. Algebraic
geometry is roughly about the study of solutions of systems of polyno-
mial equations. On the one hand, this includes the question of finding
or describing all the solutions of a system of polynomial equations.
This can be viewed as an essentially algebraic question: find the com-
mon roots of some polynomials. On the other hand, in practice this
question can be very difficult and not particularly enlightening; in that
case, we instead aim to describe the shape or geometric properties of
the solutions.

5.1. First examples. The purpose of this section is to introduce you
to the huge sea of examples that are available in algebraic geometry.
Most of the assertions here are made without justification; some are
easy, some are hard.

Example 5.1. In R2, consider the common solutions of y = x and
x2+y2 = 2 (sketch the curves!). The intersection is two points, (x, y) =
(±

√
2,±

√
2).

Example 5.2. In R3, consider the common solutions of x2+y2−z2 = 1
and z = 0. The horizontal cross-sections z = c of the surface x2 + y2 −
z2 = 1 are circles in the plane z = c; the common solutions of x2 +y2−
z2 = 1 and z = 0 are the unit circle x2 + y2 = 1. We can parameterize
the solutions by a trigonometric function f(t) = (cos(t), sin(t), 0). (Can
you find rational functions that parameterize the solution set?)

Example 5.3 (Lines and conics). A single equation f(x, y) ∈ K[x, y]
describes a curve f(x, y) = 0 in the plane K2. Several examples are
familiar from high school analytic geometry:

(1) A degree 1 equation ax + by + c = 0 describes a line in K2.
(2) A degree 2 equation F = ax2 + bxy + cy2 + dx + ey + f = 0

describes a conic C in K2. (Warning: it is possible that C is
empty. For example, if K = R, consider x2+y2 = −1. There are
no solutions. This is a very good reason for studying algebraic
geometry over algebraically closed fields, such as C.)

(3) If K = R, conics can be further separated into cases by the sign
of the discriminant b2 − 4ac. Suppose that F is not a product
of two linear forms, and that the zero locus F = 0 is nonempty.

• If b2 − 4ac > 0, then C is a hyperbola.
• If b2 − 4ac = 0, then C is a parabola.
• If b2 − 4ac < 0, then C is an ellipse.
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Any two hyperbolas/parabolas/ellipses can be brought to one
another by a change of variables of the form

x′ = ax + by + e

y′ = cx + dy + f

where the matrix

(
a b
c d

)

is invertible. Conversely, such

changes of coordinates preserve the above trichotomy. Such a
change of coordinates is called an invertible affine linear trans-
formation.

(4) If K = C, the above classification of conics becomes simpler:
the discriminant b2 − 4ac is complex, so its sign is not a mean-
ingful concept.

• If b2 − 4ac 6= 0, then by an invertible affine linear transfor-
mation we can carry C to a circle x2 + y2 = 1.

• If b2 − 4ac = 0, then by an invertible affine linear transfor-
mation we can carry C to a parabola y = x2.

Example 5.4 (Cubic curves). Curves of higher degree are both
tremendously complicated and tremendously interesting. A degree 3
curve f(x, y) = 0 is called an elliptic curve, and these play a huge role
in modern number theory and cryptography. If K = C, then by linear
changes of coordinates we can essentially bring such curves into one of
three normal forms:

y2 = x(x − 1)(x − λ) (λ 6= 0, 1)

y2 = x3 + x2

y2 = x3.

These respectively describe a smooth cubic, a nodal cubic, and a cusp-
idal cubic. In the case of the smooth cubic, the parameter λ controls
the “geometry” or “shape” of the curve, and different values of λ give
curves that are legitimately different from one another. (Compare this
situation with conics, where huge classes of conics that perhaps look
different from one another are actually the same in a different coordi-
nate system!)

Example 5.5. The study of curves of degree ≥ 4 in K2 is very much
a current subject of active research.

Example 5.6 (Surfaces). In three variables, the solutions f(x, y, z) =
0 of an equation f ∈ K[x, y, z] define a surface in K3. As with curves,
low degree situations are easy to understand, and things get progres-
sively more difficult.
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(1) A degree 1 equation ax + by + cz + d = 0 describes a plane.
(2) In degree 2, the generalization of conic curves is quadric sur-

faces. The most important examples are:
• x2 + y2 + z2 = 1, a unit sphere.
• z2 = xy, a quadric cone.
• z = xy, a smooth quadric surface.

As with conics there is a notion of equivalence between different
conics given by invertible affine linear transformations, but we
won’t go into this here.

Over C, any quadric surface is swept out by lines that lie on
the surface. For example, for each λ ∈ C, the quadric surface
z = xy contains all the lines of the form

Lλ = {(t, λ, λt) : t ∈ C}.

It also contains all the lines of the form

Mλ = {(λ, t, λt) : t ∈ C}.

(Can you find lines on the sphere x2 + y2 + z2 = 1? Clearly
the real sphere doesn’t contain any lines, so any lines you find
will have to involve complex numbers.)

(3) In degree 3, we have cubic surfaces such as the Fermat cubic

x3 + y3 + z3 = 1.

These have a lot of beautiful geometry; for example, (up to
small lies) a cubic contains 27 lines arranged in an interesting
combinatorial pattern.

(4) Past degree 3, we quickly get into open research questions.

So far our examples have focused on hypersurfaces, which are the
zero loci of a single polynomial. A lot of algebraic geometry is consid-
erably easier in this case–this is the difference between solving a single
polynomial equation and solving a system of polynomial equations. On
the other hand, even if your goal is to study hypersurfaces then it often
becomes necessary to study systems of several equations.

Example 5.7. A line in K3 is defined by a system of equations

ax + by + cz + d = 0

a′x + b′y + c′z + d′ = 0

where the vectors (a, b, c) and (a′, b′, c′) are not parallel. Equivalently,
a line is the intersection of two planes. (These vectors are the normal
vectors to the planes, so the planes are not parallel iff these vectors are
not parallel.)
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Example 5.8. We saved our most important example for last. Let
{p1, . . . , pn} = Z ⊂ K2 be a collection of points in the plane. We claim
that Z is the common zero locus of a system of polynomial equations.

First let us consider the simple case of two points. Let p1 = (x1, y1)
and let p2 = (x2, y2). Then pi is the common zero locus of the system
of equations

x − xi = 0

y − yi = 0

Consider the system of equations

(x − x1)(x − x2) = 0

(x − x1)(y − y2) = 0

(y − y1)(x − x2) = 0

(y − y1)(y − y2) = 0.

If a point p = (x0, y0) satisfies this system, then we see that x0 is x1 or
x2 (from the first equation) and y0 is y1 or y2 (from the fourth equation).
This leaves the four possibilities p ∈ {(x1, y1), (x1, y2), (x2, y1), (x2, y2)}.
If (x1, y2) satisfies the system, then the third equation gives y1 = y2

(so (x1, y2) = (x1, y1) = p1) or x1 = x2 (so (x1, y2) = (x2, y2) = p2)).
Similarly, if (x2, y1) satisfies the system then the second equation shows
that either (x2, y1) = p1 or (x2, y1) = p2. We conclude that the only
solutions of the system are p1 and p2.

In the general case of n points, write each point as pi = (xi, yi). Then
pi is the common zero locus of the equations

F 1
i := x − xi = 0

F 2
i := y − yi = 0.

Consider the set of equations

{F a1
1 F a2

2 ∙ ∙ ∙F an
n : ai ∈ {1, 2}}.

This directly generalizes the system of equations from the two point
case above, and it can be shown that the common zero locus of these
equations is Z = {p1, . . . , pn}. (This will become more clear after we
make a more general argument about unions of zero loci in the next
section.)

5.2. Affine space. Until now, when we’ve looked at collections of
points or zero loci of polynomials, we’ve considered them as subsets
of Kn. However, since Kn is a vector space, the natural “transforma-
tions” of Kn are the linear mappings T : Kn → Kn. In particular, the
origin 0 is a distinguished point in Kn.
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When we compare configurations of points or shapes in algebraic
geometry, the origin in Kn is not really a special point—it has nice
coordinates, sure, but for example we don’t care about the relative
position between our shapes and the origin. The vector space structure
on Kn is not helpful.

Definition 5.9. As a set, affine n-space over K is the set An
K = Kn.

We don’t give An
K any other operations—in particular, it is not a vector

space. If the field K is clear or unimportant, we will drop it from the
notation and write An.

Since 0 ∈ An is no longer a distinguished point, the natural transfor-
mations of An should allow us to move 0 to any other point x0 ∈ An.
This can be accomplished by allowing translations.

Definition 5.10. An affine linear transformation T : An → An is any
function of the form

Tx = Ax + x0,

where A is an n × n matrix with entries in K and x0 ∈ Kn.

Lemma 5.11. The composition of two affine linear transformations is
an affine linear transformation.

Proof. Exercise. �

An affine linear transformation is invertible if there is an affine linear
transformation S : An → An which is a two-sided inverse: TS = ST =
I.

Proposition 5.12. Let T : An → An be an affine linear transforma-
tion, given by a formula

Tx = Ax + x0.

Then T is invertible if and only if the matrix A is invertible.

Proof. Exercise. �

When two subsets of An can be carried to one another by an invert-
ible affine linear transformation, it is natural to think of them as being
equivalent in some sense.

Definition 5.13. Two subsets X,Y ⊂ An are affinely equivalent if
there is an invertible affine linear transformation T : An → An such
that T (X) = Y .

Small number of points in An can be brought into a “normal form”
by an affine linear transformation if they are not in some kind of special
position:
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Theorem 5.14. Let p1, . . . , pn+1 ∈ An, and suppose they do not lie on
a hyperplane: there is no nontrivial linear equation

a1x1 + ∙ ∙ ∙ + anxn + c = 0

that all of the points satisfy. Then there is an invertible affine linear
transformation T : An → An such that T (pn+1) = 0 and T (pi) = ei,
where as usual ei denotes the coordinate point with 1 in the ith position
and 0 in the other positions.

Proof. Since the composition of invertible affine linear transformations
is invertible affine linear, we can construct our transformation An → An

in several stages. First, there is an invertible affine linear transforma-
tion that sends pn+1 to 0: just take a translation by −pn+1, which has an
inverse given by translation by pn+1. For i = 1, . . . , n, let qi = pi−pn+1

be the image of pi under translation by −pn+1. We are going to think
of the q’s as vectors in Kn instead of just as points in An, which is why
we wrote them bold.

We claim that the vectors q1, . . . , qn are linearly independent in Kn.
The alternative is that they span a proper subspace of Kn. Let U ⊂ Kn

be their span, and arbitrarily pick an (n − 1)-dimensional subspace
V ⊂ Kn such that U ⊆ V ⊂ Kn. Then V is a hyperplane in Kn

that contains q1, . . . , qn and 0. Translating back to our original coor-
dinate system, we obtain a hyperplane in An that contains p1, . . . , pn+1,
contradicting our assumption.

Since q1, . . . , qn are linearly independent in Kn, they are a basis of
Kn. Therefore, we can find a linear transformation S : Kn → Kn such
that Sqi = ei for i = 1, . . . , n. It has an invertible matrix A with
respect to the standard bases, since it takes a basis to a basis.

Finally, the desired invertible affine linear tranfsormation is the com-
position of these two transformations:

Tx = A(x − pn+1) = Ax − Apn+1. �

By composing several transformations we can get more impressive
sounding/memorable results:

Corollary 5.15. Let p1, . . . , pn+1 ∈ An and q1, . . . , qn+1 ∈ An be two
collections of points, with neither collection lying on a hyperplane.
Then there is an invertible affine linear transformation T : An → An

such that Tpi = qi for all i. In other words, any two collections of n+1
points which do not lie on a hyperplane are affinely equivalent.

Example 5.16. Any triangle in A2 can be carried to any other tri-
angle in A2 by an invertible affine linear transformation. Indeed, if a
transformation carries points p1 and p2 to q1 and q2, then it must carry
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the line segment p1p2 to the line segment q1q2. (Check!) So all we have
to do is carry the vertices to the vertices, and the triangle will come
along for the ride. Any two triangles in A2 are affinely equivalent.

It is particularly important to understand how affine linear transfor-
mations act on the zero loci of polynomials. Unfortunately, the answer
is maybe not the one you would guess unless you really think about it:

Proposition 5.17. Let F (x1, . . . , xn) ∈ K[x1, . . . , xn], and let T :
An → An be an invertible affine linear transformation. Let S : An →
An be the inverse of T . Then if X : F (x1, . . . , xn) = 0 is the zero locus
of F , its image T (X) is the zero locus of F (S(x1, . . . , xn)).

Proof. Exercise. �

Warning 5.18. In particular, it is really easy to forget that you have
to take the inverse of T !

Example 5.19. Let X : F = x2 + y2 − 1 = 0 be the unit circle, and
consider a translation T : A2 → A2 by (1, 1), so

T (x, y) = (x + 1, y + 1).

Its inverse is the translation by (−1,−1)

S(x, y) = (x − 1, y − 1).

Then the equation of T (X) is

0 = F (S(x, y)) = F (x − 1, y − 1) = (x − 1)2 + (y − 1)2 − 1,

which is indeed the equation of a unit circle centered at (1 , 1).

5.3. Affine varieties and the Zariski topology. We finally come
to the central definition of algebraic geometry. For simplicity, we now
assume that our field K is algebraically closed. Think K = C if you
prefer.

Definition 5.20. Let {fα}α∈A be a (possibly infinite) set of polynomi-
als in K[x1, . . . , xn]. The affine variety cut out by these polynomials
is

V ({fα}α∈A) := {p ∈ An : fα(p) = 0 for all α ∈ A}.
In case the set of polynomials is a finite list f1, . . . , fk, we will write
V (f1, . . . , fk) for their common zero locus.

Remark 5.21. For technical reasons it is useful to allow infinite lists
of equations in the definition of an affine variety. However, this is not
truly necessary if you do some more work. A consequence of the Hilbert
basis theorem is that any affine variety can be cut out by finitely many
equations. The proof of this requires more commutative algebra than
we have developed, but this would be a good project topic.
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In the previous sections we have seen that many interesting geomet-
ric objects are affine varieties. In particular, curves, surfaces, finite
collections of points, etc., can all be realized as the common zero loci
of collections of polynomials. We now start to learn some of the general
properties of affine varieties.

Example 5.22. The empty set ∅ ⊂ An is an affine variety, since V (1) =
∅.

Example 5.23. The full affine space An is an affine variety, since either
V (0) = An or V (∅) = An.

Proposition 5.24. An arbitrary intersection of affine varieties in An

is an affine variety.

Proof. For ease of notation, let’s discuss the case of two varieties X,Y ⊂
An. Then X = V ({fα}) and Y = V ({gβ}) for some sets of polynomials
{fα} and {gβ}. But then

X ∩ Y = V ({fα} ∪ {gβ}).

Indeed a point p ∈ An satisfies all the equations of X and all the
equations of Y if and only if p is in X ∩ Y . The generalization to an
arbitrary intersection is immediate. �

Proposition 5.25. A union of two affine varieties in An is an affine
variety. Therefore, a finite union of affine varieties in An is an affine
variety.

Proof. We foreshadowed this proof when discussing finite collections
of points. Let X,Y ⊂ An be affine varieties, defined by collections of
equations {fα}α∈A and {gβ}β∈B. Consider the set of equations

S = {fαgβ : α ∈ A and β ∈ B}.

We claim that V (S) = X ∪ Y .
Suppose p ∈ X ∪ Y . Then p ∈ X or p ∈ Y ; without loss of gener-

ality, say p ∈ X. Then fα(p) = 0 for all α ∈ A, and consequentially
(fαgβ)(p) = 0 for all fαgβ ∈ S. Therefore, p ∈ V (S).

Conversely, suppose p /∈ X ∪ Y . Then p /∈ X and p /∈ Y . Since X
is exactly the zero locus of the fα, this means that we can find some
α0 ∈ A such that fα0(p) 6= 0. Likewise, we can find some β0 ∈ B such
that gβ0(p) 6= 0. But then (fα0gβ0)(p) 6= 0, and so p /∈ V (S).

Therefore, X ∪ Y = V (S) is an affine variety. The result for finite
unions follows by induction. �
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Proposition 5.26. Let X ⊂ An and Y ⊂ Am be affine varieties. Then
the Cartesian product

X × Y = {(x, y) : x ∈ X and y ∈ Y } ⊂ An × Am

is an affine variety.

Note that by abuse of notation we think of An ×Am as being An+m.
If we think of An as having coordinates x1, . . . , xn and Am as having
coordinates y1, . . . , ym, we can think of An+m as having coordinates
x1, . . . , xn, y1, . . . , ym. Thus affine varieties in An+m can be cut out by
polynomials from the ring K[x1, . . . , xn, y1, . . . , ym].

Proof. Suppose that X is cut out by polynomials fα(x1, . . . , xn) and Y
is cut out by polynomials gβ(y1, . . . , ym). Consider the union S of these
two sets of equations in the polynomial ring K[x1, . . . , xn, y1, . . . , ym].
Write a point p ∈ An×Am as a pair (p′, p′′), where p′ ∈ An and p′′ ∈ Am.
Then

p ∈ X × Y ⇔ p′ ∈ X and p′′ ∈ Y

⇔ p′ ∈ V ({fα}) and p′′ ∈ V ({gβ})

⇔ p ∈ V ({fα}) and p ∈ V ({gβ})

⇔ p ∈ V (S).

Therefore, X × Y = V (S) is an affine variety. �

The facts we have proved about unions and intersections show that
the affine varieties in An form the closed sets of a topology on An. We
quickly recall this basic concept.

Definition 5.27. Let X be a set, and let τ ⊂ P(X) be a collection of
subsets of X. (Here P(X) is the power set of X, the set of all subsets
of X.) The set τ is called a topology on X if it satisfies the following
properties:

(1) We have ∅ ∈ τ and X ∈ τ .
(2) An arbitrary union of elements of τ is in τ .
(3) Finite intersections of elements of τ are in τ .

The elements U ∈ τ are called open sets. A subset Z ⊂ X is called
closed if its complement X \ Z is open.

Remark 5.28. The standard definition of a topology defines the open
sets first, and the definition of closedness is a consequence. In algebraic
geometry the closed sets are more fundamental, so we define them first
and call a subset U open if its complement is closed.
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Definition 5.29. A subset X ⊂ An is closed if it is an affine variety.
That is, X is cut out by a collection of polynomial equations. A subset
U ⊂ An is open if its complement is closed.

Our earlier results imply similar sounding facts for open sets:

Example 5.30. In An, the empty set and An are open.

Corollary 5.31. In An, an arbitrary union of open sets is open.

Proof. Let {Uα}α∈A be open sets. Then by De Morgan’s law,

X \
⋃

α

Uα =
⋂

α

(X \ Uα)

is an intersection of closed sets, so is closed. Therefore the complement
of
⋃

Uα is closed, and
⋃

Uα is open. �

Corollary 5.32. In An, an intersection of two open sets is open.
Therefore, finite intersections of open sets are open.

Proof. Let U, V ⊂ An be open. Then

X \ (U ∩ V ) = (X \ U) ∪ (X \ V )

is a finite union of closed sets, so is closed. Therefore U∩V is open. �

Thus we have proved the following result.

Theorem and Definition 5.33. Let τ ⊂ P(An) be the collection of
open subsets of An. Then τ is a topology on An, called the Zariski
topology.

5.4. Irreducibility. Geometry really begins once topology is
involved—topology allows to speak about all kinds of geometric prop-
erties, such as continuity, convergence of sequences, “closeness,” as well
as things like boundedness or compactness. But, the Zariski topology
is incredibly weird! You can be easily mislead if you try to make ar-
guments about the Zariski topology while thinking about more usual
topologies such as the standard topology on Rn.

Example 5.34 (Zariski topology on A1). The only closed subsets of A1

are the whole space A1, the empty set, and finite collections of points.
Indeed, if f ∈ K[x] is a nonzero polynomial, then V (f) ⊂ A1 is the set
of roots of f , and there are only finitely many of them. Given a list
{fα} of polynomials, the common zero locus of them all is contained in
the zero locus of any one of them, so any closed set except A1 is finite.

Conversely, we know that every finite subset of A1 is closed: if Z =
{x1, . . . , xk} ⊂ A1, then Z = V ((x − x1) ∙ ∙ ∙ (x − xk)).
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Consequently, the open sets in A1 are the empty set and complements
of finite sets. Open sets are huge! This topology on A1 is a standard
example in topology with many pathological properties.

Example 5.35. A topological space X is called Hausdorff if for any
two distinct points x, y ∈ X, you can find open sets U, V such that
x ∈ U , y ∈ V , and U ∩ V = ∅. In other words, distinct points
can be “bubbled off” in their own little neighborhoods. Reasonable
topological spaces (e.g. the usual topology on Rn) are Hausdorff. The
Zariski topology on An (n ≥ 1) is not Hausdorff ! The next result
proves something even worse.

Proposition 5.36. Let U, V ⊂ An be nonempty open sets. Then U ∩
V 6= ∅.

Proof. Let X = An \ U and Y = An \ V be the complementary closed
sets. Then U ∩ V 6= ∅ means that X ∪ Y 6= An. The closed sets X
and Y are each cut out by some equations; pick one nonzero equation
f from the list defining X, and one nonzero equation g from the list
defining Y . Then X ⊂ V (f) and Y ⊂ V (g), and it will be enough
to show that V (f) ∪ V (g) 6= An. But V (f) ∪ V (g) is V (fg), so it is
enough to show that V (fg) 6= An. Here fg is a nonzero polynomial, so
we need to see that there is some point p such that (fg)(p) 6= 0. The
next lemma shows this and more. �

Lemma 5.37. Let K be an algebraically closed field, and let
f(x1, . . . , xn) ∈ K[x1, . . . , xn] be a polynomial.

(1) If f 6= 0, then there are infinitely many points p such that
f(p) 6= 0.

(2) If n ≥ 2 and f is nonconstant, then there are infinitely many
points p such that f(p) = 0.

Proof. (1) The result is clear if f is a nonzero constant, so suppose
deg f ≥ 1. Without loss of generality, assume x1 appears in f . Then
we can write

f = gd(x2, . . . , xn)xd
1 + ∙ ∙ ∙ + g0(x2, . . . , xn),

where gd is nonzero. By induction on n, we can find some point
(a2, . . . , an) ∈ An−1 such that gd(a2, . . . , an) 6= 0. Now consider the
one-variable polynomial

f(x1, a2, . . . , an) = gd(a2, . . . , an)xd
1 + ∙ ∙ ∙ .

By our choice of a2, . . . , an, it has degree d. Therefore, it has at
most d roots. Then if a1 is not a root of this polynomial, we have
f(a1, . . . , an) 6= 0. Since K is algebraically closed it is infinite (this is a
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theorem whose proof requires some more algebra), and therefore there
are infinitely many values of a1 that work.

(2) In the previous proof, for each choice of point (a2, . . . , an) ∈ An−1

such that gd(a2, . . . , an) 6= 0, the polynomial f(x1, a2, . . . , an) is non-
constant and therefore has a root since K is algebraically closed.
By (1) there are infinitely many choices of (a2, . . . , an) such that
gd(a2, . . . , an) 6= 0, so there are infinitely many points p ∈ An such
that f(p) = 0. �

Spaces with the property of the proposition have a special name:

Definition 5.38. A topological space (X, τ ) is irreducible if whenever
there are closed sets Z1, Z2 such that X = Z1 ∪Z2, then either X = Z1

or X = Z2.

Corollary 5.39. An
K with the Zariski topology is irreducible.

Proof. Suppose An
K = Z1 ∪ Z2 for some closed sets Z1, Z2. Taking

complements,

∅ = An
K \ (Z1 ∪ Z2) = (An

K \ Z1) ∩ (An
K \ Z2).

Thus An
K \ Z1 and An

K \ Z2 are disjoint open sets. By the proposition,
one of them has to be empty, and therefore one of Z1 or Z2 is all of
An

K . �

Irreducible topological spaces, despite having a nice name, are hor-
ribly pathological. Things like Euclidean space Rn are very far from
being irreducible, since for example Rn is the union of two closed half-
spaces overlapping along a line. (There are also a billion other exam-
ples to show Rn is not irreducible.) Intuitively, an irreducible space is
a space where the (proper) closed subsets are “very small”: the space
is not a finite union of proper closed subsets. Correspondingly, the
nonempty open sets are “very large”: any two open sets are forced to
overlap.

Another way to quantify the size of open sets in an irreducible space
is to think about closure.

Definition 5.40. Let (X, τ ) be a topological space, and let S ⊂ X
be a subset. The closure of S is the smallest closed set S of X that
contains S. It can be shown that S is the intersection of all closed sets
containing S, and therefore that the closure actually exists.

A subset S ⊂ X is called dense if its closure is all of X.

Example 5.41. A closed set is its own closure.

Lemma 5.42. Let (X, τ ) be a topological space. Then S ⊂ X is dense
if and only if every nonempty open set U ⊂ X meets S.
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Proof. (⇒) Suppose S ⊂ X is dense. Let U ⊂ X be an open set, and
suppose it doesn’t meet S. Then its complement Z = X \ U is closed
and contains S. Since the smallest closed set that contains S is all of
X, we must have Z = X. Therefore U is empty.

(⇐) Suppose every nonempty open set U ⊂ X meets S. Let Z ⊂ X
be a closed set that contains S. Then its complement U = X \ Z
is an open set that doesn’t meet S, and therefore it must be empty.
Therefore Z = X, and the closure of S is X. �

Example 5.43. In R2 with the usual topology, the closure of an open
ball {(x, y) : x2 + y2 < 1} is the closed ball {(x, y) : x2 + y2 ≤ 1}. The
closure of the subset Q2 ⊂ R2 of points with rational coordinates is all
of R2 (use the lemma: any open set contains an open ball, and any
open ball contains points with rational coordinates). The set Z2 ⊂ R2

is already closed, since its complement is open: any point with a non-
integer coordinate can be surrounded by a little ball that doesn’t meet
any points with integer coordinates.

Example 5.44. Many examples of closure in An
K still have the intuitive

“expected” answer. For example, Let S ⊂ A2 be the set

V (x2 + y2 − 1) \ {(0, 1)},

a circle with a point deleted. Then the closure is the full circle V (x2 +
y2 − 1).

But, there are also pathological examples. For example, the integer
lattice Z2 is dense in A2

R: a polynomial that vanishes at every point
with integer coordinates has to be the zero polynomial, so there is
no nonzero f such that V (f) contains Z2. The only closed set that
contains Z2 is all of A2

R.

Lemma 5.45. A topological space (X, τ ) is irreducible if and only if
every nonempty open set is dense.

Proof. (⇒) Suppose X is irreducible, and let U ⊂ X be a nonempty
open set. Let V ⊂ X be an open set, and suppose it doesn’t meet U ,
so U ∩ V = ∅. Taking complements,

X = (X \ U) ∪ (X \ V )

is a union of closed sets. Since X is irreducible, we must have X \V =
X, and therefore V = ∅. Therefore U is dense in X.

(⇐) Suppose every nonempty open set is dense, and suppose X =
Z1∪Z2 is a union of two proper closed sets. Then taking complements,

∅ = (X \ Z1) ∩ (X \ Z2),
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so X \ Z1 and X \ Z2 are nonempty open sets which don’t intersect.
This contradicts that X \ Z1 is dense. �

Corollary 5.46. In An
K, any nonempty open set is dense.

5.5. The Zariski topology on an affine variety. In the previous
two sections we discussed the Zariski topology on an affine space: a
closed set in An is the zero locus V ({fα}α) of some collection of poly-
nomials. Here we extend this notion to define a topology on any closed
set X ⊂ An.

Definition 5.47. Let X ⊂ An be closed. A set Z ⊂ X is closed if it
is a closed set in An. Equivalently, Z is the intersection of a closed set
in An with X. The Zariski topology on X is the topology with these
closed sets.

If X = V (f1, . . . , fk) is cut out by some equations, then any closed
subset Z ⊂ X can be cut out by the defining equations of X together
with some additional equations. So for example, we can write

Z = V (f1, . . . , fk, g1, . . . , g`).

Remark 5.48. This construction of a topology on a closed set is a
special case of the subspace topology from general topology.

Example 5.49 (The Zariski topology on a set of points). Let Z ⊂ An

be a finite set of points. Then it is a closed subset of An, since individual
points are closed and finite unions of closed sets are closed. For the
same reason, every subset Z ′ ⊂ Z is closed. Equivalently, every subset
of Z is open (in the topology on Z). This topology on a finite set is
called the discrete topology.

Example 5.50 (The Zariski topology on a plane curve). Let f(x, y) ∈
K[x, y] be a nonconstant polynomial. Recall that a polynomial f is
called irreducible if whenever we factor it as f = gh then either g or h
is constant. Assume K is algebraically closed and f is irreducible. Let
X = V (f). We saw above that there are infinitely many points p such
that f(p) = 0, and therefore X is infinite. Here we sketch an argument
that the closed sets of X are:

• All of X.
• Finite subsets of X.

(Compare with the Zariski topology on A1.) It is clear that these sets
are all closed, so we have to show there are not any other closed subsets
of X.
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Let Z ⊂ X be a proper subset. Then Z is cut out from X by at
least one more equation, so we can find some g ∈ K[x, y] such that

Z ⊂ V (f, g) ( X.

This gives that g is not divisible by f , since in that case V (f, g) =
V (f) = X. The next result asserts that the system f = g = 0 has only
finitely many solutions.

Proposition 5.51. Let f ∈ K[x, y] be nonconstant and irreducible,
and let g ∈ K[x, y] be a polynomial that is not divisible by g. Then the
set V (f, g) is finite.

Proof. The proof needs somewhat more algebra than we have been
using. See for example Shafarevich “Basic Algebraic Geometry I,” the
Lemma in the first section. In particular, the fact that K[x, y] is a
UFD is crucial, so if you are pursuing the project on UFD’s this could
be a payoff for your project. �

Example 5.52 (The Zariski topology on A2). We can now discuss the
structure of an arbitrary closed set Z ⊂ A2. Suppose ∅ 6= Z 6= A2,
and pick one equation f ∈ K[x, y] such that Z ⊂ V (f). Factor f into
irreducible factors f = f1 ∙ ∙ ∙ fk, so that Z ⊂ V (f1)∪ ∙ ∙ ∙ ∪V (fk). Then
for each i, Z ∩ V (fi) is a closed subset of the plane curve V (fi), so it
either equals V (fi) or it is a finite (possibly empty) subset of V (fi), by
the previous example. It follows that Z is one of

• a point;
• a plane curve V (f), where f is irreducible;
• or a finite union of closed sets of the previous two types.

The irreducible closed sets in A2 are points and irreducible plane curves.

Example 5.53. In A2, the set

V (xy) ∪ {(1, 1)} = V (x) ∪ V (y) ∪ {(1, 1)}

is closed.

5.6. Polynomial mappings. In order to compare and relate several
varieties to one another, it is important to have the concept of a map
between two varieties. The natural functions in algebra come from
polynomials, so the natural mappings between varieties come from col-
lections of polynomials.

Definition 5.54. A polynomial mapping (or regular map) F : An →
Am is a function of the form

F (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)),
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where the components fi ∈ K[x1, . . . , xn] are polynomials.
More generally, if X ⊂ An is closed, a polynomial mapping F :

X → Am is a function which is the restriction of a polynomial mapping
An → Am.

Even more generally, if X ⊂ An and Y ⊂ Am are closed, a polynomial
mapping F : X → Y is a polynomial mapping F : X → Am such that
the image of F is contained in Y .

Example 5.55. Affine linear transformations T : An → Am are poly-
nomial mappings where all the component functions f1, . . . , fm have
degree at most 1.

Example 5.56. There is a polynomial mapping F : A1 → A3 defined
by the formula

F (t) = (t, t2, t3).

Its image is called the twisted cubic curve. The image X is in fact a
closed set in A3: on the one hand, every point in the image satisfies
the equations y − x2 = 0 and z − x3 = 0, so

X ⊂ V (y − x2, z − x3).

On the other hand, if (x, y, z) ∈ V (y − x2, z − x3), then y = x2 and
z = x3, so

(x, y, z) = (x, x2, x3) = F (x).

Therefore,

X = V (y − x2, z − x3).

The twisted cubic gives an example of an embedding:

Definition 5.57. A polynomial mapping F : X → Y is an isomor-
phism between X and Y if there is a polynomial mapping G : Y → X
such that F ◦ G = idY and G ◦ F = idX .

A polynomial mapping F : X → Y is an embedding of X into Y if
it is an isomorphism onto its image.

Remark 5.58. Set theory shows that an isomorphism is a bijection,
and an embedding is an injection. An embedding is a bijection onto
its image.

Example 5.59. Continuing the previous example, to show that the
twisted cubic map F : A1 → A3 is an embedding of A1 into A3, we
need to give a polymomial mapping G : X → A1 such that F ◦G = idX

and G◦F = idA1 . Recall that a polynomial map X → A1 has to be the
restriction of a polynomial map A3 → A1; therefore, we can define G
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by defining its extension G̃ on all of A3. Consider G̃ : A3 → A1 defined
by

G̃(x, y, z) = x.

Clearly G̃ is a polynomial mapping. For t ∈ A1, we have

G(F (t)) = G(t, t2, t3) = t,

and for (t, t2, t3) ∈ A3, we have

F (G(t, t2, t3)) = F (t) = (t, t2, t3).

Therefore F is an isomorphism between A1 and X, and it is an embed-
ding of A1 in A3.

A first property of polynomial mappings is that they are continuous
in the Zariski topology. We recall the basic definitions from topology.

Definition 5.60. Let X and Y be topological spaces. A function
f : X → Y is continuous if for every open set U ⊂ Y , the preimage

f−1(U) := {x ∈ X : f(x) ∈ U}

is open.

Continuity can also be characterized in terms of closed sets, which
is preferable for working with the Zariski topology.

Lemma 5.61. Let X and Y be topological spaces. A function f : X →
Y is continuous if and only if for every closed set Z ⊂ Y , the preimage
f−1(Z) is closed.

Proof. Exercise. �

Proposition 5.62. Let F : X → Y be a polynomial mapping, where
X ⊂ An and Y ⊂ Am are closed sets. Then F is continuous.

Proof. In case X = An and Y = Am, you did this on your homework.
In the general case, let F : X → Y be a polynomial mapping, and

let G : An → Am be a polynomial mapping such that G|X = F . Let
Z ⊂ Y be a closed set. Then Z is closed in Am, so G−1(Z) is closed.
Then G−1(Z)∩X is closed in X, and G−1(Z)∩X = F−1(Z). Therefore
F−1(Z) is closed in X, and F is continuous. �

The continuous image of an irreducible space is irreducible, so the
same is true for polynomial mappings. First we need to slightly extend
the notion of an irreducible space to the subsets of a topological space:
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Definition 5.63. Let X be a topological space and let S ⊂ X be a
subset. Then S is irreducible if whenever Z1, Z2 ⊂ X are closed and

S ⊂ Z1 ∪ Z2,

then either S ⊂ Z1 or S ⊂ Z2.

Remark 5.64. Alternately, we could introduce the correct notion of
the subspace topology on S ⊂ X: a subset of S is closed if it is the
intersection Z ∩S of a closed set in X with S. Then S is irreducible in
the sense of the previous definition if and only if S (with the subspace
topology) is an irreducible topological space.

Lemma 5.65. Let f : X → Y be a continuous map of topological
spaces, and let S ⊂ Y be the image of f . Suppose X is irreducible.
Then S is irreducible.

Proof. Suppose that S ⊂ Z1 ∪ Z2, where Z1, Z2 are closed subsets of
Y . Then

X = f−1(S) = f−1(Z1) ∪ f−1(Z2).

Since f is continuous, f−1(Z1) and f−1(Z2) are closed subsets of
X. Since X is irreducible, we find that either X = f−1(Z1) or
X = f−1(Z2). But since f maps X onto S, this implies that either Z1

or Z2 contains S. Therefore S is irreducible. �

Corollary 5.66. Let X,Y be affine varieties and let F : X → Y be
a polynomial mapping. If X is irreducible, then the image of F is
irreducible.

Some examples are called for.

Example 5.67. We know that the preimage of a closed set is closed
under a polynomial mapping. We also saw the example of the twisted
cubic, where the image of A1 in A3 was closed. Unfortunately, in
general the image of a closed set under a polynomial mapping is not
closed.

For example, consider X = V (xy− 1) ⊂ A2, and let F : A2 → A1 be
the projection F (x, y) = x. The image of F is A1 \ {0}. (Check!) This
is clearly not closed in A1.

Remark 5.68. The previous example shows that even if F : An → Am

is an affine linear transformation, then the image of a closed set is not
necessarily closed. On the other hand, if F : An → An is an invertible
affine transformation, then the image of a closed set is closed. Indeed,
if G is the inverse of F and Z ⊂ An is closed, then F (Z) = G−1(Z) is
the preimage of a closed set under the map G, so it is closed. (Compare
with an earlier HW exercise.)
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Example 5.69. The graph of a polynomial f(x1, . . . , xn−1) ∈
K[x1, . . . , xn−1] is the subset X of An defined by the equation

xn = f(x1, . . . , xn−1).

Then X is irreducible, and in fact X is isomorphic to An−1. (What are
the inverse polynomial maps An−1 → X and X → An−1?)
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6. Parameter spaces

6.1. Parameter spaces and general properties. One of the main
features of algebraic geometry that distinguishes it from other areas
of mathematics is that collections of objects in algebraic geometry can
often be described within the language of algebraic geometry.

Example 6.1. In analysis, the set of all continuous (or differentiable,
etc.) functions f : R→ R is enormous, and not really a suitable space
to do analysis on. The subject of functional analysis is an entirely ad-
ditional subject introduced to study these basic objects from analysis.

Example 6.2. In algebraic geometry, a polynomial function f : A1 →
A1 of degree d can be recorded as a single polynomial

f(x) = adx
d + ∙ ∙ ∙ + a0.

Then we can regard f as its list of coefficients (ad, . . . , a0), and therefore
we can think of it as a point in affine space Ad+1.

The general theme is that objects in algebraic geometry are specified
by only a finite amount of data. If we record that data in the right
way, we can capture the object as a point in some algebraic variety.

Example 6.3 (n points). Consider an (ordered) list p1, . . . , pn ∈ A2 of
points in the plane. Each pi has coordinates (xi, yi), so we can record
the 2n coordinates of these n points to get a point in A2n. Maybe we
record the point as an n × 2 matrix




x1 y1
...

...
xn yn





and think of the coordinates on A2n as being the xi and yi.

Inside the A2n of collections of n points, we can describe various
geometric loci.

Example 6.4 (Distinct points). In the A2n of collections of n points in
A2, consider the subset X ⊂ A2n where two of the points are the same.
Let us see that X is closed. First, we have p1 = p2 iff x1 = x2 and y1 =
y2. So, the subvariety V (x1−x2, y1−y2) of A2n describes the locus where
p1 = p2. Similarly, for i 6= j we have a subvariety V (xi − xj, yi − yj)
where pi = pj . Then X is the union of these subvarieties over all i 6= j,
and therefore X is closed.

The complement A2n \ X is the locus of collections p1, . . . , pn of
distinct points. It is open in A2n, and it is nonempty since there are
obviously collections of n distinct points in A2. Since A2n is irreducible,
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it is also dense in A2n. We say that in a general collection of n points
in A2, all the points are distinct.

The word general has a technical meaning that we are now ready to
introduce.

Definition 6.5. Suppose that a collection of geometric objects are
parameterized by an irreducible variety S. We say that the general
object has some property P if there is an open dense subset U of S
such that all the objects corresponding to points in U have property
P .

Example 6.6. In the previous example, S = A2n parameterizes col-
lections of n points in A2. Property P is “the points are distinct.” The
open set U is A2n \ X.

Example 6.7 (Collinear triples of points). Now consider A6 = A2∙3,
the parameter space for collections of 3 points in A2. We wish
to describe the locus of collinear triple of points. Three points
(x1, y1), (x2, y2), (x3, y3) lie on a line if and only if there are some
a, b, c ∈ K, not all zero, such that

ax1 + by1 + c = 0

ax2 + by2 + c = 0

ax3 + by3 + c = 0

In matrix form, this reads



x1 y1 1
x2 y2 1
x3 y3 1








a
b
c



 = 0.

Thus, the three points are collinear iff the matrix on the left has a
nonzero vector in its kernel. Since it is a 3 × 3 matrix, this happens if
and only if its determinant is nonzero. The determinant of the matrix
is

x1y2 + x2y3 + x3y1 − x1y3 − x2y1 − x3y2,

so the locus in A6 of collinear triples of points is the subvariety

X = V (x1y2 + x2y3 + x3y1 − x1y3 − x2y1 − x3y2) ⊂ A
6.

Its complement U = A6 \ X is an open set in A6. Since there are
triples of points that aren’t collinear, U is dense in A6. Therefore, the
general triple of points in A6 is not collinear.

Example 6.8 (m collinear points in A2). Let A2m be the parameter
space for m points in A2, with m ≥ 3. Let Y ⊂ A2m be the locus of m
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points that all lie on the same line. The m points all lie on the same
line if and only if any 3 of the points are collinear. For 1 ≤ i, j, k ≤ m,
let Xijk ⊂ A2m be the subset where points pi, pj, pk are collinear. Then
by a very similar computation to the previous example, we can see that
Xijk is cut out by the determinant of the matrix




xi yi 1
xj yj 1
xk yk 1



 .

Therefore, Xijk is closed in A2m. But now

Y =
⋂

i,j,k

Xijk,

so also Y is closed in A2m.

Example 6.9 (m points in A2 with at least k on a line.). Let A2m be
the parameter space for m points in A2, with m ≥ 3. Let 3 ≤ k ≤ m,
and let Z ⊂ A2m be the subset of collections of m points with at least
k lying on some line. For a size k subset I of {1, . . . ,m}, we can look
at the locus XI ⊂ A2m of collections of m points such that the k points
{pi : i ∈ I} are all collinear. Then equations for XI can be determined
by the method in the previous example. Therefore, XI is closed. We
have

Z =
⋃

I

XI ,

so Z is also closed.

Example 6.10. A line in A2 is given by an equation

ax + by + c = 0

with a, b not both zero. We can record it as a point in A3 (with coor-
dinates a, b, c) by remembering the coefficients (a, b, c). Then for any
point in the open subset A3\V (a, b), we can form the line ax+by+c = 0.

This correspondence between lines in A2 and points in A3 \ V (a, b)
isn’t totally perfect: if we scale the equation of a line it still describes
the same line. So, each line ax + by + c = 0 in A2 is represented by all
the points of the form (λa, λb, λc) in A3 (here 0 6= λ ∈ K).

The best solution to this problem is to introduce the concept of
projective space. At the level of set theory, we can define

P2 = (A3 \ {0})/ ∼,

where two points (a, b, c), (a′, b′, c′) in A3\{0} are regarded as equivalent
if there is some 0 6= λ ∈ K such that λ(a, b, c) = (a′, b′, c′). Then P2 is
the set of equivalence classes of points in A3\{0} under this equivalence
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relation. We then have a bijective correspondence between lines in A2

and the points of P2 \ {(0, 0, 1)}.
The set P2 is not an algebraic variety in the sense we have been

talking about; there is no way to think of it as a closed set in an affine
space. But, there is a mild generalization of the concept of variety
where P2 becomes an algebraic variety.

Even though the correspondence between lines in A2 and points in
A2 \ V (a, b) is not perfect, it is still good enough to work with and
doesn’t really cause any problems. So, rather than develop the theory
of projective spaces we will stick with this imperfect correspondence.

Example 6.11 (Affine linear transformations). Consider the set of
affine linear transformations

S = {T : An → An|T is affine linear}.

Such a transformation can be written uniquely in the form

Tx = Ax + b,

where A ∈ Matn×n(K) and b ∈ Kn, so we can record it by a point in

An2+n that consists of all these numbers.

Example 6.12 (Invertible affine linear transformations). An affine lin-
ear transformation is invertible if and only if the matrix A is invertible
if and only if det A 6= 0. The determinant of A is a polynomial in
the entries of A, so the open set An2+n \ V (det(A)) parameterizes the
invertible affine linear transformations. It is nonempty, so it is dense,
and the general affine linear transformation is invertible.

Often times when we show that a general object has some property
P , it is actually the case that the locus where property P does not
hold is closed. This has been the case in all the previous examples. In
such a case, we can show that the general object has property P in two
steps:

(1) Show that the locus where property P holds is open.
(2) Show that there actually is some object that satisfies property

P .

Both steps are critical, and often times the second step is the more
interesting one! (Although it hasn’t been in the previous examples.)

The above outlined strategy works very often, but there are some
examples where you have to be more careful.

Exercise 6.13. A fixed point of an affine linear transformation T :
An → An is a point x ∈ An such that Tx = x. The general affine linear
transformation has a unique fixed point. The complement consists of
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affine linear transformations that either have no fixed points or have
more than one fixed point, and this is not closed.

Example 6.14. Let A2 be the parameter space for a single point in
A2 (yes this is as dumb as it sounds). Let S ⊂ A2 be the subset

S = {(x, y) : x 6= 0 or x = y = 0}.

The set S is neither open nor closed. Let property P be the property
that (x, y) ∈ S. Then the locus where property P holds is not open;
however, there is an open dense subset of A2 where property P holds
(namely, property P holds on A2 \ V (x)). Therefore, the general point
in A2 has property P , even though the set of points in A2 with property
P is not open.

6.2. Spaces of matrices. Spaces of matrices are some of the most
important examples of parameter spaces. We clearly have a bijection
between Matm×n(K) and Amn

K , given by writing down all the entries
of an m × n matrix A as a vector of length mn. Instead of constantly
making this identification, we can just think of Matm×n(K) as actually
being an affine space. We can then discuss the Zariski topology on
Matm×n(K), closed sets, open sets, general properties of matrices, and
so on.

When m = n and we are considering square matrices, there is an
open subset

GLn(K) ⊂ Matn×n(K)

that consists of the invertible matrices. The fact that this is actually
open comes from the fact that non-invertibility is characterized by the
equation det(A) = 0, so that

GLn(K) = Matn×n(K) \ V (det).

Let us recall some of the basic properties of the determinant. The
n × n determinant is a function

det : Matn×n(A) → K

such that

(1) If two rows/columns of A are swapped, the sign of the determi-
nant changes.

(2) If a row/column of A is scaled, the determinant is scaled by the
same factor.

(3) If one row/column of A is added to another, the determinant is
unchanged.

(4) The determinant of the identity matrix I is 1.

The first main theorem on determinants is that they actually exist:
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Theorem 6.15. There is a unique function det : Matn×n(A) → K
satisfying the above four properties. It is given by

det A =
∑

σ∈Sn

sign(σ)a1σ(1) ∙ ∙ ∙ anσ(n).

Proof. First check that the formula satisfies the properties. Next, show
that the properties determine the value of det A for any A, and therefore
there is at most one such determinant function. �

Another key consequence of the properties of the determinant is the
following.

Theorem 6.16. We have det A = 0 if and only if A is not invertible.

Proof. From the properties of the determinant, if A and B are related
by row operations then det A = 0 iff det B = 0 and A is invertible
iff B is invertible. So, we can replace A by a reduced row echelon
matrix B. If B is not invertible then it has a row of zeroes, and in this
case det B = 0 since scaling the row of zeroes is supposed to scale the
determinant, but the matrix is unchanged by scaling that row. On the
other hand if B is invertible then B = I and det B = 1 6= 0. �

In particular, notice that the determinant is in fact a polynomial in
the entries of the matrix A, and therefore V (det) is a closed subset of
Matn×n(K).

More generally, we want to consider the loci in Matm×n(K) given by
various conditions on the rank of the matrix. Our main goal in this
section is to prove the following theorem:

Theorem 6.17. Let Mk ⊂ Matm×n(K) be the locus of matrices of rank
at most k:

Mk = {A ∈ Matm×n(K) : rk(A) ≤ k}.
Then Mk is closed.

The subvariety Mk is often called a determinantal variety.

Remark 6.18. You might wonder why we don’t instead consider a
locus like

{A ∈ Matm×n(K) : rk(A) = k}.
In general these sets are neither open nor closed. If k ≤ min{m,n}
(the maximal rank of an m × n matrix) then the closure of this set is
Mk from the theorem.

To prove the theorem, we may as well assume k ≤ min{m,n}, since
otherwise Mk = Matm×n(K) and there is nothing to prove. The key
to proving the theorem is to introduce the concept of the minors of a
matrix.
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Definition 6.19. Given an m × n matrix A and an integer k ≤
min{m,n}, we can form a k × k submatrix of A by picking any k
rows and any k columns. The determinant of such a k × k submatrix
is a k × k minor of A.

Clearly each k × k minor of A is a polynomial of degree k in the
entries of A.

Example 6.20. The 2 × 2 minors of the matrix
(

a b c
d e f

)

are ae−bd, af−cd, and bf−ce. The first minor is zero if and only if the
first two columns are multiples of each other. The second minor is zero
if and only if the first and third columns are multiples of each other.
The third minor is zero if and only if the second and third columns are
multiples of each other. All three minors are zero if and only if all three
columns are multiples of each other, if and only if the columns span an
at most 1-dimensional space, if and only if the rank of the matrix is at
most 1.

Theorem 6.21. An m × n matrix A has rank less than k if and only
if every k × k minor of A is zero.

Proof. (⇒) First suppose matrix A has rank less than k. This means
that the image of the linear transformation T : Kn → Km associated
to A has dimension less than k. In terms of the columns of A, this says
that any k columns of A are linearly dependent. If we form any k × k
submatrix B of A, then the columns of that matrix are also linearly
dependent. Therefore, B is not invertible and det B = 0. Therefore,
every k × k minor of A is zero.

(⇐) Let us suppose matrix A has rank at least k, and show that
there is some k × k minor of A that is not zero. Since A has rank at
least k, the columns of A span a subspace of Km of dimension at least
k. Throw out columns that depend on other columns to get a basis of
the image. If it has dimension greater than k, throw out some more
columns until we have exactly k independent columns. In this way we
get an m × k submatrix B of A, and it has rank k. Notice that every
k × k minor of B is also a k × k minor of A. Therefore, it is enough to
show that B has a nonzero k × k minor.

Since B has rank k, we can perform elementary column operations
to it to reduce it to column echelon form B′. Since B has k columns, to
specify a k×k submatrix of B we just have to specify k rows. Consider
the k × k submatrix C of B given by the rows where B′ has pivots,
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and let C ′ be the corresponding k × k submatrix of B′. Performing
column operations on B changed the determinant of C in a predictable
way: its sign changed if we swapped columns, it was scaled if we scaled
columns, and it was unaffected if we added one column to another. (It
is crucial here that C is as “wide” as B: if C had fewer columns than B,
then adding a column outside of C to a column inside C would change
the determinant unpredictably. This is why we reduced the m×k case
in the previous paragraph.) It follows that det C is nonzero if and only
if det C ′ is nonzero. But, the matrix C ′ is in column echelon form and
has a pivot in every column. Therefore C ′ is invertible, det C ′ 6= 0,
and det C 6= 0. We conclude that B has a nonzero k × k minor, and
therefore A also has a nonzero k × k minor. �

Corollary 6.22. If k < min{m,n}, then the set Mk ⊂ Matm×n(K) of
matrices of rank at most k is closed. If the coordinates on Matm×n(K)
are aij, then Mk is cut out by the (k +1)× (k +1) minors of the matrix
(aij).

Note that we have a chain of containments

{0} = M0 ⊂ M1 ⊂ M2 ⊂ ∙ ∙ ∙ ⊂ Mmin{m,n} = Matm×n(K).

Each Mi is closed inside of Mi+1.

Remark 6.23. In fact, each subvariety Mk ⊂ Matm×n(K) is ir-
reducible, althgouh we can’t prove that here. Each containment
Mk ( Mk+1 is actually proper if k is in the right range (exhibit a ma-
trix of rank k + 1 that isn’t of rank k), so the complement Mk+1 \ Mk

is an open dense subset of Mk+1. It consists of the matrices of rank
exactly k + 1.

(You can also show that the closure of Mk+1 \ Mk is Mk+1 by more
elementary means; you’ll (try to) do this on your homework.)

Theorem 6.24. If k ≤ min{m,n}, then the closure of Mk \ Mk−1 is
Mk−1.

Proof. Let Y ⊂ Matm×n(K) be the closure of Mk \ Mk−1. Since Mk is
closed, it is clear that Mk\Mk−1 ⊂ Y ⊂ Mk. Conversely, let A ∈ Mk−1;
we have to show that A ∈ Y . It will be enough to produce a polynomial
map F : A1 → Matm×n(K) such that F (0) = A and F (t) ∈ Mk \Mk−1

for all t 6= 0. Indeed, then F−1(Mk \ Mk−1) is a nonempty (hence
dense) open set in A1. Then F−1(Y ) is a closed set that contains
F−1(Mk \Mk−1), so it must be all of A1. Therefore, F (0) = A is in Y .

To produce such a map F , let r = rk A. Without loss of generality,
assume the first r columns of A are independent, and write the column
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vectors of A as

v1, . . . , vr,vr+1, . . . , vk,vk+1, . . . , vn

Let V = Im A = span(v1, . . . , vr) ⊂ Km, so V has dimension r. We
can find a subspace U ⊂ Km of dimension k−r such that U ∩V = {0},
and then the subspace U +V ⊂ Km has dimension k. Let ur+1, . . . , uk

be a basis of U . Finally, let B be the m × n matrix with columns

0, . . . , 0,ur+1, . . . , uk, 0, . . . , 0

Now consider the map F (t) = A + tB. Then F (0) = A. For time
t 6= 0, we compute the rank of F (t) by using column operations. The
matrix has columns

v1, . . . , vr,vr+1 + tur+1, . . . , vk + tur,vk+1, . . . , vn.

Since the matrix A has rank r, we can use column operations on A to
reduce it to the matrix with columns

v1, . . . , vr, 0, . . . , 0, 0, . . . , 0;

we only have to use the first r columns to clear out all the other
columns, since all the other columns are linear combinations of the
first r columns. Performing the same operations on A + tB, we get a
matrix with columns

v1, . . . , vr, tur+1, . . . , tuk, 0, . . . , 0.

Scaling the u columns we get a matrix with columns

v1, . . . , vr,ur+1, . . . , uk, 0, . . . , 0.

The first k columns here are a basis of the the space U+V , and therefore
the rank of the matrix is k. Therefore F (t) ∈ Mk \ Mk−1 for all times
t 6= 0. We conclude that A ∈ Y . �

6.3. The semicontinuity principle. A common situation in alge-
braic geometry is that to each point in a parameter space we can asso-
ciate some matrix. We typically care about the rank of these matrices.
Our study of the determinantal varieties Mk ⊂ Matm×n(K) shows that
the rank has to vary in a very particular way.

Definition 6.25. Let X ⊂ AN be closed. A matrix-valued polynomial
map

F : X → Matm×n(K)

is just a polynomial map F : X → Amn, where we think of Amn as
being the space Matm×n(K).
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Equivalently, in the case of X = AN , a matrix-valued polynomial
map F : AN → Matm×n(K) is a map of the form

F (x1, . . . , xN ) =




f11(x1, . . . , xN) ∙ ∙ ∙ f1n(x1, . . . , xN )

...
. . .

...
fm1(x1, . . . , xN ) ∙ ∙ ∙ fmn(x1, . . . , xN )





In general, a matrix-valued polynomial map F : X → Matm×n(K) is
the restriction of a matrix-valued polynomial map AN → Matm×n(K).

Example 6.26. Let An = A1∙n be the parameter space for n points in
A1. To a point (x1, . . . , xn) ∈ An, we associate the (n + 1) × (n + 1)
Vandermonde matrix

F (x1, . . . , xn) =




xn

1 xn−1
1 ∙ ∙ ∙ 1

...
...

. . .
...

xn
n xn−1

n ∙ ∙ ∙ 1



 .

Then F (x1, . . . , xn) has rank n + 1 if and only if Lagrangian interpola-
tion f(xi) = yi has a unique solution for any choice of yi ∈ K; this is
the case if and only if the points x1, . . . , xn are all distinct.

In terms of the determinantal varieties Mk, we find that F−1(Mn)
is the locus of n points x1, . . . , xn with at least one repetition. Then
F−1(Mn+1 \ Mn) is the locus of distinct n-uples of points.

Example 6.27. Let A12 = A2∙6 be the parameter space for 6 points in
A2. To a point ((x1, y1), . . . , (x6, y6)) ∈ A12, we associate the matrix

F ((x1, y1), . . . , (x6, y6)) =










x2
1 x1y1 y2

1 x1 y1 1
x2

2 x2y2 y2
2 x2 y2 1

x2
3 x3y3 y2

3 x3 y3 1
x2

4 x4y4 y2
4 x4 y4 1

x2
5 x5y5 y2

5 x5 y5 1
x2

6 x6y6 y2
6 x6 y6 1










.

This assignment defines a matrix-valued polynomial map F : A12 →
Mat6×6(K). The rank of this matrix is 6 if and only if there is no
nonzero conic that passes through all 6 points: if the rank is less than
6 then there is a vector (a, b, c, d, e, f ) in the kernel, and then all 6
points satisfy the equation

ax2 + bxy + cy2 + dx + ey + f = 0.

The rank of the matrix is 5 if the six points lie on a unique conic (up
to scale).
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The rank of the matrix is 4 if the six points lie on two independent
conics. The only way for this to happen is if five of the six points lie
on a line.

The rank of the matrix is 3 if the six points lie on three independent
conics. The only way for this to happen is if all six points lie on a line.

In each example, we observe that the rank of the matrix is lower
when the points are more and more “special;” the rank is as high as
possible when the points are general. This is a general fact that follows
from our study of determinantal varieties.

Theorem 6.28. Let F : X → Matm×n(K) be a matrix-valued polyno-
mial map, and suppose that X is irreducible. Let

r0 = max
x∈X

rk(F (x)).

(1) The set

F−1(Mr0 \ Mr0−1) = {x ∈ X : rk(F (x)) = r0} ⊂ X

is an open dense subset of X.
(2) For each k, the set

F−1(Mk) = {x ∈ X : rk(F (x)) ≤ k} ⊂ X

is closed in X.
(3) In particular, we have a chain of closed subvarieties of X:

F−1(M0) ⊂ F−1(M1) ⊂ ∙ ∙ ∙ ⊂ F−1(Mr0) = X.

Proof. (2) The map F is continuous and Mk ⊂ Matm×n(K) is closed,
so F−1(Mk) is closed.

(1) The complement of F−1(Mr0 \ Mr0−1) is F−1(Mr0−1), which is
closed. Therefore F−1(Mr0 \ Mr0−1) is open. It is nonempty by our
choice of r0, and therefore it is dense since X is irreducible.

(3) Take preimages of the chain of subvarieties

M0 ⊂ M1 ⊂ ∙ ∙ ∙ ⊂ Mr0

of Matm×n(K). �

Remark 6.29. Note that in (3) the inclusions do not all have to be
strict. For example, it is possible that F (x) has rank 2 for all x ∈ X,
and F−1(M0) and F−1(M1) are both empty.

The most important part of the theorem is part (2). This can be
rephrased as saying that the function x 7→ rk F (x) on X is lower-
semicontinuous on X.
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Definition 6.30. Let X be a topological space. A function λ : X → Z
is called lower-semicontinuous if for every k ∈ Z, the set λ−1((−∞, t])
is closed in X.

A function λ : X → Z is called upper-semicontinuous if for every
k ∈ Z, the set λ−1([k,∞)) is closed in X.

Remark 6.31. Observe that a function λ : X → Z is continuous if and
only if it is lower- and upper-semicontinuous. In this case, for every
integer k the set λ−1({k}) is both open and closed; this means that it
is a connected component of X (if it is nonempty).

Intuitively, a lower-semicontinuous function λ : X → Z can decrease
at special x ∈ X. An upper-semicontinuous function can increase at
special x ∈ X. A lower-semicontinuous function takes its largest value
at a general point x ∈ X. An upper-semicontinuous function takes its
smallest value at a general point x ∈ X.

Exercise 6.32. Let F : X → Matm×n(K) be a matrix-valued poly-
nomial map. Show that the function λ : X → Z defined by λ(x) =
dim ker F (x) is upper-semicontinuous.

6.4. Specialization. When we try to show that a general geometric
object has some property, recall that there are often two steps:

(1) Show that the locus where the property holds is open. (This
isn’t always true, but it is true often enough to be useful.)

(2) Show that the locus where the property holds is nonempty.

The second step is often the harder one. The technique of specialization
often helps us show that some such object exists. The idea is that it can
be hard to show that a completely random object satisfies the property
(even though this must be true for a property that holds generally).
The property can be much easier to check for an object that is special
in some way.

Example 6.33. Let us show that the general collection of 10 points
in A2 does not lie on a cubic curve.

Notice that the space of cubics on A2 has basis x3, x2y, . . . , 1 of length
10. Then for any collection (x1, y1), . . . , (x10, y10), we can set up a
10×10 matrix such that the kernel of the matrix consists of the vectors
of coefficients of cubics that pass through the 10 points. Therefore, the
determinant of this matrix (a polynomial in the 20 variables of the
parameter space A2∙10) cuts out the locus of 10 points that lie on at
least one cubic. Its complement, the locus of 10 points that don’t lie on
a cubic, is therefore open. We need to show that this locus is nonempty;
equivalently we need to give 10 points that don’t lie on a cubic.
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Suppose we vary (at least some of) our points pi with a parameter t.
You can think of this variation as being given by a map P : A1 → A20,
so P (t) = (p1(t), . . . , p10(t)). If for some time t our collection of points
P (t) does not lie on a cubic, then by semicontinuity we know that for
a general time t our collection of points does not lie on a cubic.

Now imagine that we vary our points in the following way: starting
from a random configuration of points, move 4 of them onto a line. We
can think of this as giving a map P : A1 → A20 such that P (0) has four
collinear points and P (t) for t 6= 0 is somewhat arbitrary. Any cubic
that contains the points P (0) must contain the line; therefore, P (0) is
not on a cubic if and only if the 6 points off the line are not on a conic.

The remaining 6 points are still unspecified, so let us further special-
ize them by moving three of them onto a line. Any conic that contains
the 6 points must then contain that line. If the 10 points lie on a cubic,
then residually the remaining 3 points must lie on a line. But those 3
points are still not fixed, so we may as well take them to not lie on a
line. Thus no cubic exists which contains these points.

Remark 6.34. The previous argument actually shows the following:
if we take three different lines L1, L2, L3 and put 4 points on L1 (avoid
the points of intersection of the lines), 3 points on L2, 2 points on L1,
and one point off all three lines, then there is no cubic that contains all
10 points. We could have just shown that directly instead of thinking of
the points as “specializing” onto the lines, but the specialization proce-
dure is a good method for “guessing” what a convenient configuration
of points might look like.

There is a delicate balance between trying to take a special enough
geometric object that it becomes easy to prove a property holds, and
not taking too special an object so that the property actually becomes
false.

Example 6.35. Given 10 points in A2 such that some 5 of the points
lie on the line, there is a cubic that passes through them: take a line
through the 5 points and multiply it by the equation of a conic through
the 5 points. Thus the previous example could not have been proven
by placing more than 4 points on a line.

Let us revisit the result that for any integer n ≥ 1 there exists a
collection Z ⊂ A2 of k distinct points in boring position. Recall that
this means that the evaluation map

TZ,d : Vd → Kn
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has maximal rank for every d. Let us let D be the smallest number
such that (

D + 2

2

)

= dim VD > n.

Then in particular we are supposed to show that TZ,d is injective for
d < D and surjective for d ≥ D.

Proposition 6.36. Suppose d < D. Then for a general collection
Z ⊂ A2 of n distinct points, the evaluation map TZ,d is injective.

Proof. First, in the parameter space A2n of n points in A2, there is an
open subset where the evaluation map TZ,d is injective. Indeed, we can
write down a map

F : A2n → Matn×(d+2
2 )(K)

where row i consists of all the degree ≤ d monomials in x, y evaluated
at the ith point pi = (xi, yi). Then F (Z) is just the matrix of the
evaluation map TZ,d, written down with respect to the standard bases
of Vd and Kn. Therefore TZ,d is not injective if and only if F (Z) has

rank ≤
(

d+2
2

)
− 1. The locus of Z such that TZ,d is not injective is

F−1(M(d+2
2 )−1), which is closed.

Next we have to show that the locus of Z such that TZ,d is injective
is actually nonempty. We did this in the Hilbert scheme chapter, but
here is another argument motivated by specialization.

Pick d lines L1, . . . , Ld. Since

n >

(
d + 2

2

)

= (d + 1) + d + (d − 1) + ∙ ∙ ∙ + 1,

we can specialize i + 1 points onto line Li, and we will still have some
additional points left over that don’t lie on any of the lines. Then
consider the kernel of TZ,d, which consists of degree d polynomials van-
ishing on all the points. Any such polynomial f has to vanish on Ld,
since Ld contains d +1 points. Residually, the degree d− 1 polynomial
that is left over has to vanish on Ld−1 since it contains d points, and so
on. It follows that f is a scalar multiple of L1 ∙ ∙ ∙Ld. But then f can’t
still vanish at the additional points that aren’t on the lines. Therefore
TZ,d is injective. �

Proposition 6.37. Suppose d ≥ D. Then for a general collection
Z ⊂ A2 of n distinct points, the evaluation map TZ,d is surjective.

Proof. The fact that the locus where TZ,d is surjective is open is proved
in the same way as in the first paragraph of the previous result.
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Let’s show TZ,d is surjective for general Z by induction on n. If
n < d + 1 then we always know hZ(d) = n, so we may as well assume
n ≥ d + 1. Specialize d + 1 of the points onto a line L = 0, and let
Z ′ ⊂ Z be the n′ = n − d − 1 remaining points. Then everything in
the kernel of TZ,d looks like L ∙ f where f ∈ ker TZ′,d−1. Therefore,

dim ker TZ,d = dim ker TZ′,d−1.

Furthermore, from the facts that
(

d + 1

2

)

=

(
d + 2

2

)

− (d + 1)

and

n ≤

(
d + 2

2

)

and n′ = n − d − 1 we deduce that

n′ ≤

(
d + 1

2

)

.

Therefore by induction, TZ′,d−1 is surjective (the remaining points Z ′

are general), and

dim ker TZ′,d−1 =

(
d + 1

2

)

− n′.

But then

dim ker TZ,d =

(
d + 1

2

)

− n′ =

(
d + 1

2

)

− n + (d + 1) =

(
d + 2

2

)

− n,

and by rank-nullity the rank of TZ,d is n. Therefore TZ,d is surjective.
�

Combining the previous two results proves the following statement.

Corollary 6.38. Let Z ⊂ A2 be a general collection of n distinct
points. Then the evaluation map TZ,d has maximal rank. Therefore,

hZ(d) = min

{(
d + 2

2

)

, n

}

Corollary 6.39. Let Z ⊂ A2 be a general collection of n distinct
points. Then Z is in boring position: the evaluation map TZ,d has
maximal rank for every d.
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Proof. Let A2n be the parameter space for n points, and let V ⊂ A2n be
the open subset parameterizing distinct collections of points. For each
d, there is a dense open set Ud ⊂ V parameterizing distinct collections
of points Z such that TZ,d has maximal rank. Let U =

⋂
d≥0 Ud; then

U parameterizes distinct collections of points in boring position. A
priori this is an infinite intersection of open sets, but actually we know
Ud = V for d ≥ n + 1. Therefore only finitely many of the terms in the
intersection contribute, and it is actually a finite intersection of open
sets. Therefore U is open and dense. �
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7. The Alexander-Hirschowitz theorem

7.1. Double points. We end the course by generalizing our discussion
of interpolation for points in the plane to the case of “fat points.”
This is the natural generalization of the single variable Lagrangian
interpolation problem with derivative data to the several variable case.

Remark 7.1. You showed on your homework that if Ft(x, y) ∈
K[x, y, t] is a polynomial such that

Ft(0, 0) = Ft(t, 0) = Ft(0, t) = 0

for all t, then the “limit” polynomial F0(x, y) satisfies

F0(0, 0) =
∂Ft

∂x
(0, 0) =

∂Ft

∂y
(0, 0) = 0.

We say that a polynomial F (x, y) ∈ K[x, y] (or the curve X = V (F ))
has a double point at p = (x0, y0) ∈ A2 if

F (p) =
∂F

∂x
(p) =

∂F

∂y
(p) = 0.

Thus in the remark, the limiting polynomial F0(x, y) has a double point
at the origin.

Remark 7.2. Let F ∈ K[x, y] and let X = V (F ) ⊂ A2 be the plane
curve defined by F . If p ∈ X and

∇F (p) :=

(
∂F

∂x
(p),

∂F

∂y
(p)

)

6= 0,

then the gradient vector ∇F (p) is a normal vector to the curve at p.
A vector orthogonal to it is a tangent vector to the curve at p. In this
case the curve X is smooth or nonsingular at p. So, the polynomial F
has a double point at p if and only if the curve X is singular at p.

Exercise 7.3. The line X = V (y) is smooth at each of its points.

The simplest source of polynomials double at a point is to take prod-
ucts.

Lemma 7.4. Suppose F,G ∈ K[x, y], and let p ∈ A2. Then the product
FG has a double point at p if and only if one of the following occurs:

(1) We have F (p) = G(p) = 0.
(2) Either F or G has a double point at p.

Proof. (⇐) In either case it is clear that (FG)(p) = 0. Compute the
derivatives with the product rule:

∂(FG)

∂x
(p) =

∂F

∂x
(p)G(p) + F (p)

∂G

∂x
(p).
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Clearly this vanishes in either case (1) or (2).
(⇒) Suppose FG has a double point at p. Since (FG)(p) = 0, clearly

either F (p) = 0 or G(p) = 0. If both hold, we are done, so without loss
of generality suppose F (p) = 0 and G(p) 6= 0. Then we compute the
partial derivatives

0 =
∂(FG)

∂x
(p) =

∂F

∂x
(p)G(p) + F (p)

∂G

∂x
(p) =

∂F

∂x
(p)G(p)

0 =
∂(FG)

∂x
(p) =

∂F

∂y
(p)G(p) + F (p)

∂G

∂y
(p) =

∂F

∂y
(p)G(p).

Since G(p) 6= 0, this is only possible if ∇F (p) = 0. �

This result is often used in the following form.

Corollary 7.5. Let X = V (F ) and suppose p ∈ X is a smooth point.
If FG has a double point at p, then G(p) = 0.

7.2. Double point interpolation. Given a collection of points
p1, . . . , pk ∈ A2, we can study the vector space W of polynomials of
degree at most d that are double at p1, . . . , pk. If we define an evalua-
tion map

T2Z,d : Vd → K3k

by the rule

T2Z,d(F ) =

(

F (p1),
∂F

∂x
(p1),

∂F

∂y
(p1), . . . , F (pk),

∂F

∂x
(pk),

∂F

∂y
(pk)

)

,

then this space is exactly the kernel

W = ker T2Z,d.

As usual, we are particularly interested in the dimension of W . From
that information, we can deduce if T2Z,d is injective or surjective, and
more generally we can compute rk T2Z,d.

In contrast with the case of “simple” points, even if the points
p1, . . . , pk are general it may happen that T2Z,d does not have maxi-
mal rank!

Example 7.6. Let Z = {p, q} ∈ A2 be two general points. Then
there is a line L = 0 that passes through them. The square L2 of this
equation is double at both p and q. Therefore

T2Z,2 : V2 → K6

is not injective, even though both V2 and K6 have dimension 6.
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Example 7.7. Let Z = {p1, . . . , p5} ∈ A2 be five general points. Then
there is a conic F = 0 that passes through them. The square F 2 of
this equation is double at all five points. Therefore

T2z,4 : V4 → K15

is not injective, even though both V4 and K15 have dimension 15.

Slightly more generally, given two sets of points p1, . . . , pk and
q1, . . . , q` in A2, we can study the vector space W of polynomials of de-
gree at most d that are double at p1, . . . , pk and pass through q1, . . . , q`.
This is the kernel W = ker T of the evaluation map

T : Vd → K3k+`

defined by

T (F ) = (F (p1),
∂F

∂x
(p1),

∂F

∂y
(p1), . . . , F (pk),

∂F

∂x
(pk),

∂F

∂y
(pk),

F (q1), . . . , F (q`)).

Our expectation is that such maps usually have maximal rank, which
motivates the following definition.

Definition 7.8. Let W ⊂ Vd be the subspace of polynomials which
have double points at p1, . . . , pk and vanish at q1, . . . , q`. Then the
expected dimension of W is

edim W = max

{(
d + 2

2

)

− 3k − `, 0

}

.

Equivalently, this number would be the dimension of W if the linear
transformation T has the maximal rank min{

(
d+2
2

)
, 3k + `}. Therefore,

we always have

dim W ≥ edim W.

In the parameter space A2(k+`) of lists of k + ` points in A2, there
is an open subset where the rank of T is as large as possible; by rank-
nullity there is an open subset where the dimension of W is as small
as possible. In particular, if there is one list p1, . . . , pk, q1, . . . , q` such
that the dimension of W is the expected dimension, then this holds for
a general such list.

The Alexander-Hirschowitz theorem shows that the only exceptions
to our expectation for the dimension of W were already discussed
above:

Theorem 7.9 (Alexander-Hirschowitz theorem for the plane). Let
p1, . . . , pk, q1, . . . , q` ∈ A2 be k+` general points, and let W ⊂ Vd be the
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subspace of polynomials which are double at p1, . . . , pk and pass through
q1, . . . , q`. Then dim W = edim W except in the following cases:

(1) the double line: (k, `, d) = (2, 0, 2);
(2) the double conic: (k, `, d) = (5, 0, 4).

The proof of the theorem will occupy the rest of the section. First
let us reduce to a special case.

Lemma 7.10. If the Alexander-Hirschowitz theorem is true whenever
(k, `, d) are such that the expected dimension is 0, it is true.

Proof. Suppose (k, `, d) are such that the expected dimension r =(
d+2
2

)
−3k−` is positive, and let W be the space of polynomials of degree

d which are double at general points p1, . . . , pk and pass through general
points q1, . . . , q`. Consider r additional general points q`+1, . . . , q`+r,
and let W ′ ⊂ W be the subspace of polynomials which additionally
pass through q`+1, . . . , q`+r. Then (k, `+r, d) has expected dimension 0
and is not one of the exceptions in the Alexander-Hirschowitz theorem
(all the exceptions have no simple points). Therefore dim W ′ = 0. But
W ′ is the kernel of an evaluation map

T : W → Kr

T (F ) = (F (qr+1), . . . , F (q`)),

so T is injective and dim W ≤ r. On the other hand edim W = r and
dim W ≥ edim W is always true, so dim W = edim W = r. �

7.3. Specialization. Many cases of the Alexander-Hirschowitz theo-
rem can be proved by a simple specialization technique.

Observation 7.11. Suppose p1, . . . , pk and q1, . . . , q` are distinct
points that all lie on the x-axis y = 0; write pi = (xi, 0) and qi = (x′

i, 0).
If F (x, y) is double at p1, . . . , pk and vanishes at q1, . . . , q`, then the
polynomial f(x) = F (x, 0) factors as

(x − x1)
2 ∙ ∙ ∙ (x − xk)

2(x − x′
1) ∙ ∙ ∙ (x − x′

`)g(x)

for some polynomial g(x). Indeed, f(x) vanishes at all the points, and

df

dx
(x) =

∂F

∂x
(x, y)

∣
∣
∣
∣
y=0

,

so f ′(x) must vanish at x1, . . . , xk.

In particular, if p1, . . . , pk, q1, . . . , q` all lie on a line L = 0 and 2k+` ≥
d + 1, then any polynomial F of degree d that is double at p1, . . . , pk

and passes through q1, . . . , q` must be divisible by the line: F = GL.
Furthermore, since the line is smooth at each of its points, the residual
polynomial G must still pass through p1, . . . , pk.
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Example 7.12. Consider the space W of polynomials of degree ≤ 5
which are double at 7 general points; in our earlier notation, (k, `, d) =
(7, 0, 5). We have dim V5 = 21, so edim W = 21 − 3 ∙ 7 = 0. We show
that W = {0}.

Specialize 3 of the double points to be collinear. Then any F ∈ W
has 6 zeroes on the line, so is divisible by it. Any F ∈ W can then be
written in the form GL, where G ∈ W ′ is an element of the space of
degree ≤ 4 polynomials with 4 general double points and 3 collinear
simple points. To show W = {0} it is enough to show W ′ = {0}.

Further specialize one of the double points onto the line with the 3
collinear simple points. Then any G ∈ W ′ has 5 zeroes on the line,
is divisible by it. Any G ∈ W ′ can then be written in the form HL,
where H ∈ W ′′ is an element of the space of degree ≤ 3 polynomials
with 3 general double points and one simple point (at the point where
the double point specialized onto the line).

At this point we don’t have to do any further specialization: W ′′

is visibly zero. Suppose H ∈ W ′′. Then it is a cubic double at two
(collinear) points, so it is divisble by a line. Residually, we have a conic
which is double at one point and passes through 3 points (all general).
It has to be divisible by the line through the double point and a simple
point. Residually, we have a degree 1 polynomial that vanishes at 3
general points, and this is absurd. Therefore H = 0.

On the other hand, it is possible to become “stuck” with the special-
ization. Intuitively, we can’t place d+2 zeroes on a line without losing
independence of conditions: once a polynomial F vanishes at d + 1
places on a line (say y = 0) it will be divisible by a line, and then the
vanishing of the partial derivative (∂F/∂x)(p) at any point of y = 0 is
automatic. In terms of the evaluation map T : Vd → K3k+`, this would
say that one of the rows of the corresponding matrix depends on the
others, and so it won’t necessarily have maximal rank. (If the number
of columns

(
d+2
2

)
is at least as big as the number of rows 3k + ` then

it definitely doesn’t have maximal rank; in the other case things are
more delicate.)

Example 7.13. Consider the space W of polynomials of degree ≤ 4
which are double at 5 general points; we know dim W > edim W = 0,
so the specialization method should fail in this case. Put three of
the double points on a line. Then any F ∈ W factors as F = GL,
where G ∈ W ′ is of degree ≤ 3, has two general double points and
passes through three collinear points. But already W ′ has edim W ′ =
10 − 3 ∙ 2 − 3 = 1, so W ′ 6= {0}. Thus it is not possible to conclude
dim W = 0 by this specialization. (Which is a good thing!)
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Example 7.14. Unfortunately, there are cases that are not exceptions
to the Alexander-Hirschowitz theorem where this specialization is not
sufficient. Consider (k, `, d) = (15, 0, 8), so there are 15 double points
and polynomials of degree at most 8. Then edim W = 0, and the
Alexander-Hirschowitz theorem asserts W = {0}. Our only option is
to try and specialize 5 double points onto the line, to get 10 zeroes along
the line. Residually we get polynomials G ∈ W ′ of degree ≤ 7 with 10
general double points and 5 simple points on the line. The expected
dimension is 36 − 3 ∙ 10 − 5 = 1, so W ′ 6= {0}. The specialization was
too drastic, and can’t show W = {0}.

7.4. Tangency conditions. We have the following problem. Suppose
x1, . . . , xd ∈ K are nonzero numbers (possibly repeated) and let W ⊂
Vd be the subspace of polynomials such that F (x, 0) is of the form

F (x, 0) = c
d∏

i=1

(x − xi).

If we further impose that F (0, 0) = 0, then it follows that F (x, 0) = 0,
so F is divisible by y. Then (∂F/∂x)(0, 0) = 0, so it is only one more
linear condition for F to be double at the origin (0, 0). Therefore we
shouldn’t expect a double point at (0, 0) to impose three conditions on
the coefficients of F .

The solution to this problem is to “dynamically” specialize a double
point to the origin: instead of asking for F ’s that are double at the
origin, we ask for F ’s that are limits of polynomials with a double
point tending to the origin. It turns out that such F ’s are still divisible
by the line, but furthermore if F = yG then the residual polynomial G
must additionally pass through the origin and be tangent to the line!
This means there are actually two conditions that the coefficients of G
have to satisfy.

Proposition 7.15. Let Ft(x, y) ∈ K[x, y, t] be a family of polynomials
of degree at most d in x and y. Suppose there are nonzero numbers
x1, . . . , xd ∈ K and a polynomial H(t) such that

Ft(x, 0) = H(t)
d∏

i=1

(x − xi).

Furthermore suppose that at time t the polynomial Ft(x, y) has a double
point at (0, t), so

Ft(0, t) =
∂Ft

∂x
(0, t) =

∂Ft

∂y
(0, t) = 0.



POLYNOMIAL INTERPOLATION 91

Then F0(x, y) factors as

F0(x, y) = yG(x, y),

where G is a polynomial such that

G(0, 0) =
∂G

∂x
(0, 0) = 0.

In other words, G passes through (0, 0) and (if it is smooth) it is tangent
to the x-axis there.

Proof. We basically have to chase coefficients. Let us expand Ft(x, y)
as a polynomial in t with coefficients in K[x, y]:

Ft(x, y) = (a+bx+cy+dx2+exy+fy2+∙ ∙ ∙ )+(g+hx+iy+∙ ∙ ∙ )t+∙ ∙ ∙ .

The constant term of the polynomial 0 = Ft(0, t) is a, so a = 0:

Ft(x, y) = (bx+ cy +dx2 + exy +fy2 + ∙ ∙ ∙ )+(g +hx+ iy + ∙ ∙ ∙ )t+ ∙ ∙ ∙ .

Next consider Ft(x, 0). Written as a polynomial in t with coefficients
in K[x], this looks like

Ft(x, 0) = (bx + dx2 + ∙ ∙ ∙ ) + (g + hx + ∙ ∙ ∙ )t + ∙ ∙ ∙ .

Since Ft(x, 0) takes the form c(t)
∏

(x−xi), the coefficient of each power
of t is a constant multiple of

∏
(x − xi). Since all the xi are nonzero

and the coefficient of t0, namely (bx+ ∙ ∙ ∙ ), is divisible by x, this forces
the coefficient of t0 to be 0. Therefore (bx + cy + ∙ ∙ ∙ ) is divisible by y,
and we can write

Ft(x, y) = y(c + ex + fy + ∙ ∙ ∙ ) + (g + hx + iy + ∙ ∙ ∙ )t + ∙ ∙ ∙ .

Consider the derivative (∂Ft/∂y)(0, t). First compute

∂Ft

∂y
(x, y) = (c + ex + 2fy + ∙ ∙ ∙ ) + (i + ∙ ∙ ∙ )t.

Then the constant term of (∂Ft/∂y)(0, t) is c, so c = 0:

Ft(x, y) = y(ex + fy + ∙ ∙ ∙ ) + (g + hx + iy + ∙ ∙ ∙ )t + ∙ ∙ ∙ .

Look again at Ft(0, t) = 0, this time at the linear term: we get g = 0,
so

Ft(x, y) = y(ex + fy + ∙ ∙ ∙ ) + (hx + iy + ∙ ∙ ∙ )t + ∙ ∙ ∙ .

Consider Ft(x, 0) again:

Ft(x, 0) = (hx + ∙ ∙ ∙ )t + ∙ ∙ ∙ .

As before, the coefficient (hx + ∙ ∙ ∙ ) must be a constant multiple of∏
(x − xi), and therefore y divides (hx + iy + ∙ ∙ ∙ ). So,

Ft(x, y) = y(ex + fy + ∙ ∙ ∙ ) + y(i + ∙ ∙ ∙ )t + ∙ ∙ ∙ .
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Finally, consider the derivative (∂Ft/∂x)(0, t). We have

∂Ft

∂x
(x, y) = (ey + ∙ ∙ ∙ ) + y(∙ ∙ ∙ )t + ∙ ∙ ∙ ,

and looking at the coefficient of t in (∂Ft/∂x)(0, t) we find that e = 0.
Finally, we conclude that

Ft(x, y) = y(fy + ∙ ∙ ∙ ) + y(i + ∙ ∙ ∙ )t + ∙ ∙ ∙ ,

so

F0(x, y) = y(fy + h.o.t.).

Therefore y divides F0 and the residual polynomial G satisfies G(0, 0) =
0 and (∂G/∂x)(0, 0) = 0. �

7.5. Collections of points with some on a line. We will prove the
Alexander-Hirschowitz theorem by induction on d. Since our special-
ization produces points and tangency conditions which lie along a line,
the theorem doesn’t directly apply to the systems of residual curves
that arise after we split off a line. In order to get a clean induction, we
need to generalize the theorem to allow such conditions.

Fix a line L : y = 0, and nonnegative numbers (k, `, `′, ε, d) with
ε = 0 or 1 and

0 ≤ `′ ≤ (d + 2 − ε)/2.

Let W ⊂ Vd be the subspace of polynomials with

• k general double points,
• ` general simple points,
• `′ prescribed simple points along L, and
• ε tangency conditions on L (i.e. the polynomials pass through

the point and the derivative in the direction of the line van-
ishes.)

The expected dimension of W is defined to be

edim W = max

{(
d + 2

2

)

− 3k − (` + `′) − 2ε, 0

}

;

this is what the dimension would be if the obvious evaluation map has
maximal rank.

Theorem 7.16 (Generalized Alexander-Hirschowitz theorem). With
the above assumptions, we have dim W = edim W except in the follow-
ing cases:

• a double line: (k, `, `′, ε, d) = (2, 0, 0, 0, 2);
• a double conic: (k, `, `′, ε, d) = (5, 0, 0, 0, 4);
• three collinear zeroes: (k, `, `′, ε, d) = (0, 0, 1, 1, 1);
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• two double points and 4 collinear zeroes: (k, `, `′, ε, d) =
(2, 0, 2, 1, 3).

As with the original Alexander-Hirschowitz theorem, it is enough to
prove the theorem in the case edim = 0, by adding additional general
simple points.

Lemma 7.17. With the above assumptions, we have `′ + 2ε ≤ d + 1.
Thus, the number of prescribed zeroes along L is at most d + 1.

Proof. We have

`′ + 2ε ≤ (d + 2 + 3ε)/2 ≤ (d + 5)/2.

If d ≥ 3 then `′ + 2ε ≤ d + 1 follows. The cases d = 0, 1, 2 are easily
checked independently. �

7.6. Specialization, take 2. Suppose numbers (k, `, `′, ε, d) have been
given, that edim = 0, and we are trying to exhibit positions for the
points such that the space W is zero. Let the line be y = 0, place the
points on the line at points other than (0, 0), and at time t let Wt ⊂ Vd

be the subspace where all but one of the points is fixed, and the last
point is positioned at (0, t). If Wt is ever zero we win, so suppose Wt

is nonzero for every time t.

Lemma 7.18. If Wt is nonzero for every time t, then there is a poly-
nomial Ft(x, y) ∈ K[x, y, t] such that Ft ∈ Wt for all t. Furthermore,
we can assume Ft 6= 0 for all t.

Proof. The space Wt is the kernel of an evaluation map

Tt : Vd → KN .

If we write down the matrix of this map with respect to standard bases,
then the entries of the matrix will be polynomials in t. For every
time t, the matrix doesn’t have maximal rank (since edim = 0 but
dim Wt 6= 0), so the maximal minors of this matrix are all zero. Think
of this family of matrices as a matrix A(t) whose entries come from the
field K(t) of rational functions in t. Then the minors of A(t) are also
zero, since they are polynomials in t which are zero when evaluated at
every time t. Therefore A(t) doesn’t have maximal rank, and there is
a vector in its kernel. The entries of this vector are rational functions
of t. By clearing denominators and cancelling common factors, we
can make them be polynomials in t with no common zero. These
polynomials in t are the coefficients of the monomials (in x and y) of
a polynomial Ft(x, y) such that Ft ∈ Wt for all t. Furthermore, since
the polynomials in t had no common zero, every Ft has at least one
monomial that appears in it with a nonzero coefficient. �
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Now we pursue the following specialization strategy. Suppose we
have numbers (k, `, `′, ε, d) with `′ + 2ε ≤ d + 1 and suppose edim = 0
but W 6= {0}. If `′ + 2ε = d + 1 then every F ∈ W is divisible by
L, F = GL, and we can instead examine the residual polynomials
G ∈ W ′. Here W ′ corresponds to the data (k, `, 0, 0, d − 1). The
expected dimension of W ′ is the same as W (the binomial coefficient
went down by d + 1, and so did the number of conditions on the line).
Thus, so long as this data is a case where the AH-theorem is true, we
win.

Suppose instead that `′ + 2ε ≤ d − 1. Then we can specialize some
number m of double and/or n of simple points onto the line until the
total number of zeroes on the line is d or d + 1. If it is d + 1, then
F = GL and the residual polynomials G ∈ W ′ correspond to the data
(k − m, ` − n,m, 0, d − 1). Observe that m ≤ (d + 1)/2 since the total
number of zeroes on the line was d + 1. Again the expected dimension
hasn’t changed (check!), so if the generalized AH-theorem holds for this
data, we win again.

(The hard case.) Finally it is possible that we have arrived in a case
where there are d zeroes along the line after specializing the double
and/or simple points (this is analogous to Example 7.14 where we got
“stuck”). In this case, if we want to specialize another double point
onto the line then we need to consider tangency conditions. Specialize
a double point onto the x-axis y = 0 by approaching along the y-axis.
If there is a curve with the required properties for all times t, then the
space W ′ corresponding to the data

(k − m − 1, ` − n,m, 1, d − 1)

must be nonzero. We have m ≤ d/2, so the `′ here satisfies the required
inequality

`′ ≤ ((d − 1) + 2 − 1)/2.

Additionally, the expected dimension is still the same. So, we apply
the contrapositive: if W ′ is zero, then W = {0} and we win.

7.7. The combinatorial game. We’re done with the algebraic ge-
ometry of the problem; now it’s time to analyze the specialization and
make sure that we can always carry it out except in the cases where
the theorem is false.

Example 7.19. One good example is probably more illustrative than
the full proof of the theorem. Again consider degree d = 8 with k = 15
double points. Specialize 4 double points onto a line, and then send in
a 5th. Residually we have the data (10, 0, 4, 1, 7); degree 7 polynomials
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with 4 simple points and a tangency condition along a line, as well as
10 general double points.

We already have 6 zeroes along the line, so specialize one more double
point onto the line to get 8. The line splits and leaves us with the resid-
ual system (9, 0, 1, 0, 6). It takes 7 zeroes on the line to split it off again,
so specialize 3 more double points. Residually we get (6 , 0, 3, 0, 5). It
takes 6 zeroes on the line to make it split again and we already have 3,
so send in 2 more double points. We get (4, 0, 1, 1, 4), since we had an
excesss zero along the line. We need 5 zeroes on the line and we have 3,
so specialize another double point and get (3, 0, 1, 0, 3). We have 1 zero
on the line and need 4, so send in two double points to get (1 , 0, 1, 1, 2).
We have 3 zeroes on the line, which makes it already split, and we get
(1, 0, 0, 0, 1). This is zero, since there are no lines with a double point.

Since the proof of the main theorem is by induction, we just have
to analyze one step of this procedure and make sure we don’t end up
with any of the systems where the theorem is false.

Proof of the Generalized Alexander-Hirschowitz Theorem 7.16. We
prove the theorem by induction on d, starting from high degree cases
and assuming the result holds for lower degree cases. This mimics the
computation in Example 7.19, but for a general case.

Notice that all the supposed counterexamples to the generalized the-
orem have degree at most 4. There is no obstruction to repeatedly spe-
cializing points onto lines and computing the residual systems before
we get down to systems with d = 5.

Consider a system (k, `, `′, ε, 5). We are given `′ ≤ (d + 2− ε)/2 ≤ 7
2

and ε ≤ 1. So `′ + 2ε ≤ 5. If there are any double points, specialize at
least one of them onto the line, and then continue to specialize points
onto the line until either the number of zeroes on the line will be 6,
or there are already 5 zeroes and a double point will cause there to be
7. Then in either case we can perform the specialization (keep track
of tangency data as needed) and the resulting system of degree 4 has
edim = 0 and it isn’t just 5 double points (there are some simple points
or a tangency residual to the line). Thus the resulting system W ′ is
{0}, and also W = {0}.

Consider a system (k, `, `′, ε, 4) other than (5, 0, 0, 0, 4). We are given
`′ ≤ 3 and ε ≤ 1. If `′ + 2ε 6= 0, we can specialize points onto the line
arbitrarily until there are 5 or 6 zeroes on the line and the residual
system will have at most 3 zeroes on the line; we win in this case. If
`′ = ε = 0, then either there are at least 3 simple points or 6 double
points. If there are 6 double points then emptiness of (5 , 1, 0, 0, 4)
implies emptiness with 6 double points. In any case we can specialize
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exactly 5 zeroes onto the line, and the resulting W ′ is {0} (it has no
tangency condition).

Consider a system (k, `, `′, ε, 3) other than (2, 0, 2, 1, 3). We have
`′ ≤ 5

2
and ε ≤ 1. If `′ + 2ε = 4 we must have k ≥ 3 or ` ≥ 3, the

line splits off without specialization, and the resulting W ′ is empty. If
`′ + 2ε < 4, specialize points onto L until we get 4 or 5 zeroes on L;
start with the double points if there are any. If the resulting W ′ has
any double points then it also has a simple point or tangency along the
line, and thus W ′ is {0}.

Consider a system (k, `, `′, ε, 2) other than (2, 0, 0, 0, 2). We have
`′ ≤ 1 and ε ≤ 1. If `′ + 2ε = 3, the line splits off and W ′ is empty. If
there are two double points and any other point, then clearly W ′ = {0}
since two copies of the line between the two double points split off. If
there is one or fewer double points then we can specialize at will and
there can be at most two residual zeroes on the line.

The degree 1 case is clear.
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8. Exercises

Problem 8.1. Find, with proof, a polynomial f ∈ R[x] of smallest
degree such that

f(0) = 2

f(1) = 4

f(2) = 12

f(3) = 32

f(4) = 70

f(5) = 132.

What is the second smallest degree of a polynomial satisfying the above
equalities?

Problem 8.2. Let f(x) ∈ R[x], a ∈ R, and let m ≥ 1. Show that
f (k)(a) = 0 for all 0 ≤ k ≤ m − 1 if and only if (x − a)m divides f .

Problem 8.3 (Multivariate interpolation—a preview). Consider three
distinct points

(x1, y1), (x2, y2), (x3, y3) ∈ R
2

and three arbitrary values z1, z2, z3 ∈ R. We answer the question: when
can we find a linear polynomial f(x, y) of the form f(x, y) = ax+by+c
such that f(xi, yi) = zi for all i?

(1) Show that if the three points (xi, yi) are not collinear, then we
can find an f such that f(xi, yi) = zi for all i. (Hint: think
about the existence proof for single-variable Lagrangian inter-
polation.)

(2) Show that if the three points (xi, yi) are collinear, then for some
choice of the values zi it is not possible to find such an f .

Problem 8.4. Let ft(x) ∈ R[x, t] be a polynomial in two variables,
viewed as a family of polynomials in x parameterized by t. Suppose
that

ft(0) = 0

ft(t) = t2

ft(t
2) = t4

(That is, the polynomial at time t passes through the points (0, 0),
(t, t2), and (t2, t4) on the parabola y = x2.)

(1) Give at least two families ft(x) satisfying the assumptions. The
more examples the better!
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(2) What can you say is always true about the the polynomial f0(x),
regardless of what the family ft(x) is? (Hint: as t → 0, three
points are “colliding.” Can you say three interesting things?)

Problem 8.5. Let R and S be commutative rings with 1. A ring
homomorphism φ : R → S is a function which preserves the addition,
multiplication, and unit element. That is,

(1) φ(f + g) = φ(f) + φ(g),
(2) φ(fg) = φ(f)φ(g), and
(3) φ(1R) = 1S.

Recall that R[x] is the polynomial ring and RR is the ring of functions
from R to R. There is a function φ : R[x] → RR which takes a poly-
nomial to its corresponding polynomial function. Formally, if p ∈ R[x]
then φ(p) is the function x 7→ p(x).

(1) Show that φ is a ring homomorphism.
(2) Show that φ is injective.
(3) (For those of you with more algebra background.) Let p be a

prime number, and let Fp = Z/pZ be the finite field with p

elements. We analogously define a function φ : Fp[x] → FFp
p .

Describe the kernel of φ.

Problem 8.6. Let R be a commutative ring. An ideal I in R is an
additive subgroup which is closed under multiplication by elements in
R. If f ∈ R, the principal ideal generated by f is the subset

(f) := {af : a ∈ R}.

An ideal I is principal if I = (f) for some f ∈ R.

(1) Let f ∈ R. Show that the principal ideal (f) is actually an
ideal.

(2) Show that in the polynomial ring R[x] every ideal is principal.
(Hint: division algorithm.)

Problem 8.7. Find, with proof, a polynomial f ∈ R[x] of smallest
degree such that

f(0) = 2

f ′(0) = −3

f ′′(0) = 2

f(1) = 0

f ′(1) = −1

f ′′(1) = 2.
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Problem 8.8 (Collisions of points in the plane). Consider the following
three points in the plane R2, which depend on a time parameter t:

(x1(t), y1(t)) = (0, 0) (x2(t), y2(t)) = (t, 0) (x3(t), y3(t)) = (0, t).

Let z1 = 0, and let z2(t) and z3(t) be polynomials of t. Suppose that
ft(x, y) ∈ R[x, y, t] is a polynomial of three variables x, y, t such that

ft(xi(t), yi(t)) = zi(t).

(1) Show that z2(0) = z3(0) = 0.
(2) Consider the polynomial f0(x, y). Show that

f0(0, 0) = 0

∂f0

∂x
(0, 0) = z′2(0)

∂f0

∂y
(0, 0) = z′3(0).

Thus, the limiting interpolation problem is to specify the value and the
first-order partial derivatives of f0 at the point (0, 0).

Problem 8.9. Let (x0, y0) ∈ R2, and let a, b, c ∈ R. Describe all
polynomials f(x, y) such that

f(x0, y0) = a

∂f

∂x
(x0, y0) = b

∂f

∂y
(x0, y0) = c.

(Hint: one approach is to first solve the problem when (x0, y0) = (0, 0).
Then make a change of coordinates.)

Problem 8.10 (Interpolation with non-consecutive derivatives). In the
interpolation problem with derivatives, we specified the 0th through
(mi − 1)st derivatives of a polynomial at point xi. We can instead try
to specify more arbitrary derivatives. This problem shows that this
story is more delicate.

(1) Let x1, x2, x3 ∈ R be distinct, and let y1, y2, y3 ∈ R. Show that
there is a unique polynomial f ∈ R[x] of degree at most 2 such
that

f ′(x1) = y1 f ′(x2) = y2 f(x3) = y3.

(2) Let x1, x2, x3 ∈ R be distinct, and let y1, y2 ∈ R. Show that if
f ∈ R[x] is a polynomial of degree at most 2 and

f ′(x1) = y1 and f ′(x2) = y2,
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then f ′(x3) can be determined in terms of x1, x2, x3, y1, y2.
Thus, for most choices of y3 ∈ R, there is no polynomial
f ∈ R[x] of degree at most 2 such that

f ′(x1) = y1 f ′(x2) = y2 f ′(x3) = y3.

Problem 8.11. Formulate and prove the analogue of Theorem 1.14 in
the notes for Lagrangian interpolation with multiplicities.

Problem 8.12. Consider a linear system

a11x1 + ∙ ∙ ∙ + a1nxn = b1

...

am1x1 + ∙ ∙ ∙ + amnxn = bm.

For short, write it in matrix form as Ax = b.

(1) The associated homogeneous system is the system Ax = 0.
Show that the set of solutions

U = {h ∈ Kn : Ah = 0} ⊂ Kn

is a subspace of Kn.
(2) Suppose p ∈ Kn solves the original system: Ap = b. (We say

p is a particular solution.) Show that any solution p′ of Ax = b
can be written uniquely in the form

p′ = p + h

for some solution h ∈ U of the associated homogeneous system.

Problem 8.13. Let V be a vector space. Show that the intersection
of any collection of subspaces of V is a subspace of V .

Problem 8.14. Let V be a vector space, and let S ⊂ V be a subset.

(1) Show that span(S) is a subspace of V .
(2) Show that any subspace of V which contains S contains

span(S). Therefore, span(S) is the smallest subspace of V
which contains S.

Problem 8.15. Let {Wα}α∈A be any collection of subspaces. Show
that

∑

α∈A

Wα = span

(
⋃

α∈A

Wα

)

.

Problem 8.16. Let V be a finite-dimensional vector space, and let
v1, . . . , vn ∈ V be a linearly independent list. Show that this list can
be extended to a basis v1, . . . , vn,u1, . . . , um ∈ V of V .
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Problem 8.17. Let (x1, y1), . . . , (x5, y5) ∈ K2 be five points in the
plane. Prove that there is a nonzero polynomial f(x, y) ∈ K[x, y] of
degree at most 2 such that f(xi, yi) = 0 for i = 1, . . . , 5.

(The degree of a monomial cxayb is a+ b. The degree of a multivari-
able polynomial is the highest degree of a monomial with a nonzero
coefficient.)

Problem 8.18. Let V ⊂ K[x] be the subset of polynomials of degree
at most 5 which satisfy f(1) = f(2) = f ′(2) = 0.

(1) Show V is a subspace of K[x].
(2) Give a basis of V .

Problem 8.19. Let X be a finite set, and let KX be the vector space
of all functions from X to K. What is the dimension of KX? Compute
a basis of KX .

Problem 8.20. Show that a subspace of a finite-dimensional vector
space is finite-dimensional.

Problem 8.21. Show that each of the following vector spaces is
infinite-dimensional.

(1) V is the vector space over R of polynomial functions f : R→ R.
(2) V is the vector space over R of continuous functions f : R→ R.
(3) V is the vector space K[x, y] of polynomials in two variables

x, y.
(4) V is the vector space

∞⊕

i=1

K := {(a1, a2, . . .) : ai ∈ K and all but finitely many ai are 0},

where the addition is defined componentwise and the scalar
multiplication is evident. (This vector space is called an infinite
direct sum.)

(5) V is the vector space

∞∏

i=1

K := {(a1, a2, . . .) : ai ∈ K},

with the evident operations. (This vector space is called an
infinite direct product.)

Problem 8.22. Let f(x, y) ∈ K[x, y] be a polynomial in two variables.

(1) Suppose that K is infinite, and suppose that f(a, b) = 0 for all
a, b ∈ K. Show that f is the zero polynomial.
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(2) Suppose that K is a finite field. Show that there is a nonzero
polynomial f(x, y) ∈ K[x, y] such that f(a, b) = 0 for all a, b ∈
K.

Problem 8.23. Let V ⊂ K[x, y] be a subspace of K[x, y]. The com-
mon zero locus of V is the set

Z(V ) = {(a, b) ∈ K2 : f(a, b) = 0 for all f ∈ V } ⊂ K2.

(1) For the rest of the problem, suppose K is infinite. Show that if
V 6= {0}, then Z(V ) is a proper subset of K2.

(2) For a point p = (a, b) ∈ K2, define a subset

V (−p) = {f ∈ V : f(p) = 0} ⊂ V.

Show that V (−p) is a subspace of V . Furthermore, it is a proper
subspace of V if and only if p /∈ Z(V ).

(3) Suppose V is finite-dimensional and p ∈ K2 \Z(V ). Show that

dim V (−p) = dim V − 1.

Problem 8.24. Let V and W be vector spaces, and let T, S : V →
W be linear transformations. Show that T + S : V → W , defined
pointwise, is a linear transformation.

Problem 8.25. Let U ⊂ Kn be a subspace of dimension n − m.

(1) Show that there is a linear transformation T : Kn → Km such
that ker T = U .

(2) Show that there is an m × n matrix A such that

U = {x ∈ Kn : Ax = 0}.

Problem 8.26. Let T : V → W be a linear transformation.

(1) Suppose v1, . . . , vn ∈ V are linearly independent and T is in-
jective. Show that Tv1, . . . , Tvn are linearly independent.

(2) Suppose v1, . . . , vn ∈ V span V and T is surjective. Show that
Tv1, . . . , Tvn span W .

(3) Suppose v1, . . . , vn ∈ V are a basis of V . Show that T is bijec-
tive if and only if Tv1, . . . , Tvn are a basis of W .

Problem 8.27. Let T : V → W be a linear transformation, and
suppose V and W are finite-dimensional. (Do not use the rank-nullity
theorem for the next parts!)

(1) Suppose that V and W are finite-dimensional and dim V >
dim W . Show that T is not injective.

(2) Suppose that V and W are finite-dimensional and dim V <
dim W . Show that T is not surjective.
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(3) Suppose that V and W are finite-dimensional and dim V =
dim W . Show that T is injective iff it is surjective iff it is bijec-
tive.

Problem 8.28. Let Vn−1 ⊂ K[x] be the vector space of polynomials
of degree at most n − 1. Let x1, . . . , xn ∈ K be distinct, and define a
linear transformation

T : Vn−1 → Kn

Tf = (f(x1), . . . , f (xn)).

Show that T is injective, and use this to give a simpler “non-
constructive” proof of our first statement on Lagrangian interpolation.
(Theorem 1.13 in the notes.)

Problem 8.29. Carry out a procedure similar to the one outlined
in Problem 5 to give a simple proof of our theorem on Lagrangian
interpolation with derivatives. (Theorem 1.19 in the notes.)

Problem 8.30. Let V , W , and W ′ be vector spaces, and let T : V →
W and S : V → W ′ be linear transformations. Recall that the direct
product W × W ′ is the vector space

{(w,w′) : w ∈ W,w′ ∈ W ′}

with the evident operations.

(1) Show that the function

T × S : V → W × W ′

defined by

(T × S)(v) = (Tv, Sv)

is a linear transformation.
(2) Show that the function

Ψ : Hom(V,W ) × Hom(V,W ′) → Hom(V,W × W ′)

defined by

Ψ(T, S) = T × S

is a bijective linear transformation. In other words, giving the
data of a pair of linear transformations V → W and V → W ′

is “the same” as giving a linear transformation V → W × W ′.

Problem 8.31. Determine the possible Hilbert functions hZ(d) of a
collection of 5 points Z = {p1, . . . , p5} ∈ K2. For each possible Hilbert
function h, geometrically describe necessary and sufficient conditions
on Z such that hZ = h.
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Problem 8.32. Let Z = {p1, . . . , pn} ∈ K2 be a collection of n
collinear points. Compute the Hilbert function of Z.

Problem 8.33. Classify all collections Z = {p1, . . . , pn} ∈ K2 of n
points such that hZ(n − 2) = n. (Remember that we always know
hZ(n − 1) = n.)

Problem 8.34. Inscribe a regular hexagon in the unit circle in R2,
and let Z = {p1, . . . , p6} ∈ R2 be the six vertices. Compute the Hilbert
function of Z.

Problem 8.35. For an integer e ≥ 0, consider the set of n =
(

e+2
2

)

points

Z = {(i, j) : i, j ∈ N and i + j ≤ e} ⊂ R2.

Show that

hZ(d) = min

{(
d + 2

2

)

, n

}

for every d ≥ 0. Therefore, the evaluation map TZ,d : Vd → Kn has
maximal rank for every d.

Problem 8.36. Let T, S : An → An be affine linear transformations.
Show that T ◦ S is affine linear.

Problem 8.37. Show that an affine linear transformation T : An → An

given by

Tx = Ax + x0

(where A is an n × n matrix and x0 ∈ Kn) is invertible if and only if
the matrix A is invertible.

Problem 8.38. Let Z = {p1, . . . , pn} ∈ A2 be n distinct points in
the plane. Show that Z is the common zero locus of two polynomials
f, g ∈ K[x, y] such that deg f ≤ n − 1 and deg g ≤ n. (Hint: first
handle the case where all the points pi have different x-coordinates.)

Problem 8.39. Let T : A2 → A2 be an invertible affine linear trans-
formation and suppose its inverse S : A2 → A2 is given by

S

(
x
y

)

=

(
a b
c d

)(
x
y

)

+

(
e
f

)

.

Let F ∈ K[x, y] be any polynomial, and let X ⊂ A2 be the zero locus
F (x, y) = 0. Show that T (X) is the zero locus of F (ax + by + e, cx +
dy + f).
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Problem 8.40. With the same notation as in Problem 5, let K = R
and let

F = Ax2 + Bxy + Cy2 + Dx + Ey + F.

Show that the discriminants of F (x, y) and F (ax + by + e, cx + dy + f)
have the same sign. Therefore, invertible affine linear transformations
carry conics to conics with discriminants of the same sign.

Problem 8.41. Let T ⊂ A2
R be a triangle in the plane. Show that

there is an ellipse inscribed in T which is tangent to T at each of the
midpoints of T . (Hint: this is easy if T is equilateral.)

Problem 8.42. The following construction gives one of the most gen-
eral ways that topologies arise in geometry. Let X be a set and let
d : X × X → R≥0 be a function that takes nonnegative real values.
We think of d(x, y) as the distance between x and y. The pair (X, d)
is called a metric space if the distance function satisfies the following
properties for all x, y, z ∈ X.

(1) (Definiteness) d(x, y) = 0 iff x = y.
(2) (Symmetry) d(x, y) = d(y, x).
(3) (Triangle inequality) d(x, z) ≤ d(x, y) + d(y, z).

Let (X, d) be a metric space. The open ball of radius ε centered at
x ∈ X is the set

Bε(x) = {y ∈ X : d(x, y) < ε}.

A subset U ⊂ X is called open if for every x ∈ U there is some ε > 0
such that Bε(x) ⊂ U .

(1) Show that any open ball Bε(x) is an open set.
(2) Show that the collection τ of open sets defines a topology on

X.
(3) Show that the topological space (X, τ ) is Hausdorff: given two

distinct points x, y ∈ X, there are open sets U, V ⊂ X such
that x ∈ U , y ∈ V , and U ∩ V = ∅.

On the other hand, the Zariski topology on affine space is not Hausdorff.
Therefore, there is not a distance function d : An × An → R such that
the corresponding topology is the Zariski topology.

Problem 8.43. A polynomial map F : An → Am is a function of the
form

F (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)),

where f1, . . . , fm ∈ K[x1, . . . , xn]. Let Y ⊂ Am be a closed set. Show
that the preimage of Y ,

F−1(Y ) := {p ∈ An : F (p) ∈ Y },
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is a closed set in An. (In topology language, this says F is continuous.
Hint: handle the case where Y = V (g) is defined by one equation first.)

Problem 8.44. Let (X, τ ) be a topological space, and let Z ⊂ X be
a subset. The closure of Z is the smallest closed set that contains Z.
Show that the closure of Z actually exists, and that it is the intersection
of all closed sets that contain Z.

Problem 8.45. Let Z2 ⊂ A2
R be the lattice of points with integer

coordinates. Show that the closure of Z2 in A2
R is A2

R. (We say Z2 is
dense in A2

R.)

Problem 8.46 (Challenge). Let X ⊂ A2
R be the subset defined by the

equation y = ex. Show that the closure of X in A2
R is A2

R.

Problem 8.47. Think of the space X = Mat2×2(K) of 2 × 2 matrices
with entries in K as an affine space A4. For each of the following
subsets of X, determine (with proof) if the set is either open, closed or
neither.

(1) The set of matrices A such that

A

(
1
1

)

=

(
0
0

)

(2) The set of invertible matrices.
(3) The set of matrices of rank 1.
(4) The set of matrices of rank at least 1.
(5) The set of matrices of rank at most 1.

Problem 8.48. Let X ⊂ A3 be the twisted cubic curve, which is the
image of the map F : A1 → A3 defined by

F (t) = (t, t2, t3).

Consider the projections of X onto the xy-, yz-, and xz-planes. For
each projection, determine if it is closed, and if it is, give equations for
the image.

Problem 8.49. Show that the parabola y = x2 in A2 is isomorphic to
A1.

Problem 8.50. Show that if f(t) ∈ C[t], then there are (at most)
finitely many constants c ∈ K such that the polynomial f(t) + c has a
repeated root.



POLYNOMIAL INTERPOLATION 107

Problem 8.51. Let f(t), g(t) ∈ C[t] be nonzero, and consider the
polynomial mapping

F : A1
C → A2

C

F (t) = (f(t), g(t)).

Let a, b ∈ C be chosen so that deg(af(t) + bg(t)) =
max{deg f(t), deg g(t)}. (Why can we do this?) For a constant c ∈ C,
consider the line

L = V (ax + by + c).

Show that for all but finitely many choices of c, the preimage F−1(L)
consists of exactly

max{deg f(t), deg g(t)}

points.

Problem 8.52. Show that the circle X : x2 + y2 = 1 in A2
C is

not isomorphic to A1
C. (Hint: suppose F : A1

C → X given by
F (t) = (f(t), g(t)) is an isomorphism. Use the previous problem to
bound the degrees of f and g, and analyze the remaining cases to get
a contradiction.)

Problem 8.53 (Challenge). Let K be algebraically closed, and let f ∈
K[x, y] be nonconstant. Show that the cardinality of X = V (f) ⊂ A2

is the same as the cardinality of K. Conclude that any two irreducible
plane curves in A2 are homeomorphic (there is a continuous bijection
between them, with continuous inverse).

Problem 8.54. Show that if p1, . . . , pm are m general points in An,
then no two points have a coordinate that is equal.

Problem 8.55. Let A6 be the parameter space for homogeneous degree
2 polynomials

F = ax2 + by2 + cz2 + dxy + eyz + fzx.

Show that the general such polynomial is not a product of two homo-
geneous degree 1 polynomials.

Hint: the hard part is to find a nontrivial equation in the six coef-
ficients that is satisfied by any product of two degree 1 polynomials.
Consider the associated symmetric matrix




2a d f
d 2b e
f e 2c



 .
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Show that if F is a product of degree 1 polynomials, then this matrix
is not invertible. Conceptually, this matrix arises in the computation
of the gradient of F : we have

∇F =





∂F
∂x
∂F
∂y
∂F
∂z



 =




2a d f
d 2b e
f e 2c








x
y
z



 .

Problem 8.56. (1) Show that a general affine linear transforma-
tion T : An → An has a unique fixed point.

(2) Explicitly describe the subset of A2 corresponding to affine lin-
ear transformations T : A1 → A1 that do not have a unique
fixed point. Show that this set is not closed.

Thus, this is a natural example of a general property that holds on
an open dense subset, even though the set of points where the property
holds is not open.

Problem 8.57. This problem is often useful for computing closures.
Let S ⊂ An be a subset, and let F : A1 → An be a polynomial map.
Suppose that F (t) ∈ S for infinitely many t ∈ A1. Show that F (t) ∈ S
for all t ∈ A1.

Problem 8.58. Let k ≤ min{m,n} and let

Mk = {A : rk A ≤ k} ⊂ Matm×n(K).

Let
Sk = {A : rk A = k} ⊂ Matm×n(K).

Show that the closure of Sk is Mk.

Problem 8.59. Let p1, . . . , pn ∈ K be distinct, and let q1, . . . , qn ∈ K
be arbitrary. Show that if d ≥ n − 1, there is a polynomial f ∈ K[x]
of degree at most d such that f(pi) = qi for all i.

Problem 8.60. Let p1, . . . , pn ∈ An. Show that there is a hyperplane
in An which contains p1, . . . , pn.

Problem 8.61. Let V and W be vector spaces of dimension n. Show
that there is an isomorphism T : V → W .

Problem 8.62. Let V = Matn×n(K), and let M1 ⊂ V be the subset
of matrices of rank at most 1. Show that

span(M1) = V.

Problem 8.63. Consider the following collection of 6 points in A2:

Z = {(1, 0), (2, 0), (3, 0), (4, 0), (0, 1), (0, 2)}.

Compute the Hilbert function hZ(d).
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Problem 8.64. Show that if Z ⊂ An is a general collection of n + 1
points, then they do not lie on a hyperplane.

Problem 8.65. Let X ⊂ AN be closed, and let F : X → Matm×n(K)
be a matrix-valued polynomial map. Show that the function λ : X → Z
defined by λ(x) = dim ker F (x) is upper-semicontinuous.

Problem 8.66. Show that if Z ⊂ A2 is a general collection of 5 points,
then they lie on a unique conic.

9. Topics for further study

A component of the final exam for the original MASS course was to
complete a self-guided project on a topic related to the course. Here is
a discussion of topics that were suggested for the project.

Difficulty. The proposed projects below are given approximate diffi-
culty rankings from * to ****. Since you all have widely ranging levels
of preparation for the course, the most important thing is to pick a
project that will be a beneficial learning experience, and I hope this
can guide you.

Topics in Linear Algebra

Polynomial approximation. (*-**) We have concerned ourselves
with finding polynomials which interpolate points exactly. This is an
interesting problem in algebra, but in applied areas we often want to
fit a small degree polynomial to a very large data set. The data in such
applications is often “fuzzy,” so the data won’t actually lie on a small
degree polynomial, even though it might be very close to one. Therefore
from an applied standpoint it doesn’t make sense to try and solve the
interpolation problem exactly; instead we should look for approximate
solutions.

Least squares minimization for prescribed points. If xi ∈ R are points
and yi ∈ R are values, we might try to find a polynomial f of degree
≤ d that minimizes a sum

∑

i

(f(xi) − yi)
2.

By developing the theory of inner product spaces in linear algebra, this
problem has a very clean solution.
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Least squares minimization for a prescribed function. If g : [0, 1] → R
is an integrable function, we can try to find a polynomial f of degree
≤ d that minimizes the integral

∫ 1

0

(f(x) − g(x))2 dx.

Again, inner product spaces in linear algebra make this easy.

Stone-Weierstrass theorem. If g : [0, 1] → R is a continuous function,
we might try to find a polynomial f such that

max
x∈[0,1]

|f(x) − g(x)|

is small. The Stone-Weierstrass theorem says we can make the above
maximum as small as we like, so long as we let the degree of f get
arbitrarily large. This theorem has more of an analysis flavor.

Possible references. Axler, “Linear algebra done right,” Chapter 6.
Rudin, “Principles of Mathematical Analysis.”

Eigenvalues and Google; the Billion Dollar Eigenvector. (*-**)
The natural next topic in linear algebra is eigenvalues and eigenvectors
and diagonalization. The original PageRank algorithm that Google
used to achieve global domination is based on a simple eigenvector
computation. The internet is encoded in a graph, with vertices repre-
senting pages and edges representing links. We let a viewer randomly
click on links and record what fraction of time they spend at each page,
with the hypothesis being that heavily linked pages are more impor-
tant. This fraction of time spent at each page can be phrased in terms
of an eigenvector computation. The result helps you find better cat
pictures.

Possible references. Axler, “Linear algebra done right,” Chapter 5.
Heffron, “Linear Algebra,” has an appendix on PageRank.

Topics in Algebraic geometry

Beginning projective geometry. (*-**) We have already seen in
class that by considering “points at infinity” we can streamline the
exposition of various topics. For example, the nature of a plane conic
is determined by its points at infinity.

Projective geometry can be viewed as fixing the (false) theorem that
“any two distinct lines in the plane meet at a point.” For each equiva-
lence class of parallel lines, we add an “ideal” infinite point at infinity
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where those parallel lines all meet. These infinite points form an entire
line of points at infinity.

The introduction of homogeneous coordinates makes projective ge-
ometry fairly straightforward from an algebraic standpoint. For exam-
ple, it is easy to algebraically compute the points at infinity on a plane
curve.

One goal of this project could be to classify conics in the projective
plane up to projective equivalence.

Possible references. Bix, “Conics and cubics,” or Shafarevich, “Basic
Algebraic Geometry I” (substantially harder).

Intersection multiplicity and Bézout’s theorem. (**-***) We’ve
seen that it would be useful to know how many times curves in A2 of
degree d and e should intersect. As a baby theorem, we showed that
a curve of degree d and a line intersect in at most d points, unless the
curve of degree d contains the line. You also had a homework problem
where you saw that if there are five points with no three collinear then
there is only one conic that vanishes at all five; in other words, this says
two irreducible conics meet in at most 4 points. The important theorem
of Bézout says that in A2 a curve C of degree d and a curve D of degree
e intersect at most de times counting multiplicity, unless they have a
component curve in common. (If you also learn about projective space,
this theorem can be improved: in P2

C there are exactly de intersections.)

Possible references. Bix, “Conics and cubics.”

Unique factorization domains. (**-***) When studying hypersur-
faces F = 0 in An, it is very useful to be able to factor F into irreducible
factors. A simple induction shows that this can always be done, but
it is not so clear that the factorization is unique. A classical theorem
says that the polynomial ring R[x1, . . . , xn] in any number of variables
is a unique factorization domain, implying that this is the case. The
main argument goes by induction on the number of variables. One
shows using Gauss’ Lemma that if a ring R is a UFD then so is R[x].
The goal of this project would be to learn a proof of this theorem.
Along the way, you will learn about commutative rings, prime and ir-
reducible elements, integral domains, the content of a polynomial, and
the aforementioned Gauss’ Lemma.

Possible references. Dummit & Foote “Abstract Algebra,” but we can
probably find an easier text as well.
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Elliptic curves. (**-***) Elliptic curves are of tremendous impor-
tance in both algebraic geometry and number theory, as well as in
cryptography. The geometric side of the story can be understood in
terms of projective cubic plane curves. If a flex point is placed at in-
finity, then a group law on C is defined by saying that P + Q + R = 0
whenever P,Q,R are collinear. (Some care has to be taken in case
there are tangent lines...) A good goal for this project would be to see
that this rule (when all the technicalities are resolved) actually defines
a group law. In particular, the proof of associativity takes some real
work.

Possible references. Bix, “Conics and cubics,” and Silverman and Tate,
“Rational points on elliptic curves.”

Beginning higher-dimensional algebraic geometry. (***-****)
As we will see soon in class, an algebraic variety is a locus cut out by
a system (or ideal) of defining polynomials.

Pretty quickly there are some algebraic formalities needed to make
sense of things. The first major theorem in this area is the Hilbert basis
theorem which roughly says that although we could consider varieties
cut out by infinitely many polynomial equations, it is actually the case
that only finitely many such equations are needed to describe the same
variety. The next major theorem in this area is Hilbert’s Nullstellen-
satz, which makes precise the idea that a locus cut out by a system
of polynomial equations is essentially the same thing as that system
of polynomial equations—just as a curve in the plane is essentially the
same thing as its defining equation.

Possible references. Kunz, “Introduction to Commutative Algebra and
Algebraic Geometry” and Cox, Little, O’Shea “Ideals, Varieties, and
Algorithms,” along with many, many others.

Intersection theory and Schubert calculus. (***-****) Suppose
I am given 4 “random” lines in 3-dimensional projective space P3 (or
C3 would be just fine too, to keep things simple.) How many lines in
space meet all 4? Answer: 2.

Bézout’s theorem (coming up shortly in the course) is the first major
theorem in intersection theory: over the complex numbers, two “ran-
dom” plane curves C and D of degrees d and e, respectively, meet in
de points.

More generally, given two geometric loci in some space we can ask
what their intersection looks like. If we expect that the intersection
is a finite number of points, we can ask how many points there are.
Intersection theory makes these notions precise.
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The Grassmannian G(1, 3) is a space whose points are the lines in P3

(i.e. the two-dimensional subspaces of C4, much like projective space
P3 itself is a space whose points are the 1-dimensional subspaces of
C4. It is a 4-dimensional space, which can be naturally thought of as
a subvariety of P5 defined by one equation. For a line L ⊂ P3, there
is a locus ΣL ⊂ G(1, 3) consisting of all the lines that meet L. It is
a 3-dimensional subvariety of the Grassmannian. Now given 4 lines
L1, . . . , L4, what is the intersection

ΣL1 ∩ ∙ ∙ ∙ ∩ ΣL4 ⊂ G(1, 3)?

It should consist of all lines that meet L1, . . . , L4. Schubert calculus is
a remarkable tool which allows us to predict the number of intersection
points in such an intersection in an essentially computational way.

Possible references. Harris, “3264 and all that,” some old course notes,
and some pep talks from me.

Algebraic geometry and manifolds. (**-***) A plane curve C :
F (x, y) = 0 is nonsingular if the gradient vector

(∇F )(p) =

(
F

∂x
(p),

∂F

∂y
(p)

)

is nonzero at every point p ∈ C. More generally, there is a similar
(but more complicated) definition of a nonsingular variety defined by
a system of polynomial equations.

Considerable progress in algebraic geometry has been made by realiz-
ing that nonsingular algebraic varieties over R or C are also manifolds;
that is, they locally look like a Euclidean space. A reasonable goal for
this project is to learn what a manifold is and learn enough of the topic
to show that a nonsingular algebraic variety is actually a manifold.

Guillemin and Pollack, “Differential Topology” for the differential
geometry side of things. Shafarevich, “Basic Algebraic Geometry I,”
for the algebraic geometry side of things.

Applications of algebraic geometry

Elliptic curves and Fermat’s Last Theorem. (*-****) Fermat’s
Last Theorem is the statement that the equation

xn + yn = zn

has no solutions in positive integers x, y, z if n ≥ 3. This theorem,
originally conjectured by Fermat, was proved 358 years later by Andrew
Wiles in 1994. A key part of Wiles’ proof makes use of an elliptic (think
cubic) curve closely related to this equation, and its group law.
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This project could go in many directions of wildly varying difficulty.
A good goal from a mathematical standpoint would be to understand
how the theorem is related to elliptic curves. For this, the survey article
Cox, “Introduction to Fermat’s Last Theorem” might be appropriate.

A lighter goal would be to read some “popular” math on the topic.
The book “Fermat’s Enigma” by Simon Singh is a wonderful read on
the history of the problem, and a great discussion of what being a
mathematician is all about; in my case it was influential in my deci-
sion to become a mathematician. Since this book is a fairly light read,
ideally the project writeup would go a bit beyond the Singh book and
incorporate some more mathematical detail, such as from the Cox sur-
vey. There is additionally a very interesting NOVA documentary on
the subject, loosely along the lines of the Singh book.

Possible references. Cox, “Introduction to Fermat’s Last Theorem”
and Singh, “Fermat’s Enigma,” as well as many others.

Elliptic curves and factorization of numbers. (**-***) One of the
main methods used for factoring really large integers is the so-called
Lenstra elliptic curve factorization method. This algorithm uses the
group law on an elliptic curve defined over a finite field (think: the
integers mod p) to efficiently factor large numbers.

Possible references. Silverman and Tate, “Rational Points on Elliptic
Curves.”

Elliptic curve cryptography. (**-***) Elliptic curves have also been
recently used to make more efficient public-key cryptography possible.
The background for this project overlaps considerably with the previ-
ous one.

Possible references. Silverman and Tate, “Rational Points on Elliptic
Curves.”

Algebraic statistics and computational biology. (***-****) The
field of algebraic statistics—which is roughly a mashup of statistics and
algebraic geometry—has recently had great applications to computa-
tional biology and, in particular, phylogenetics. A goal for this project
would be to make first contact with some of these connections. Possible
references include Part I of Pachter and Sturmfels,

Possible references. Part I of Pachter and Sturmfels, “Algebraic statis-
tics for computational biology” (probably challenging) or various sets
of lecture notes, including Hosten and Ruffa, “Introductory Notes to
Algebraic Statsitics,” among others.
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