Solutions to graded exercises in Homework #3
Stephen G. Simpson
January 25, 2011

These exercises are from §§ 1.3 and 1.4 of the textbook.

§1.3 Ex. 24. (a) True.
(b) True. \(v + (u - v) = u \).
(c) False. The weights in a linear combination can be any scalars, including 0.
(d) True.
(e) True.

§1.3 Ex. 26. (a) The augmented matrix \([A, b]\) is
\[
\begin{bmatrix}
2 & 0 & 6 & 10 \\
-1 & 8 & 5 & 3 \\
1 & -2 & 1 & 3
\end{bmatrix}
\]
which easily reduces to a (non-unique) row echelon form, for instance
\[
\begin{bmatrix}
2 & 0 & 6 & 10 \\
0 & 8 & 8 & 8 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]
In this way we see that the pivot columns are columns 1 and 2. Since the rightmost column is not a pivot column, it follows that the system \(Ax = b \) has at least one solution. In other words, \(b \) is a linear combination of the columns of \(A \).
(b) Trivially the third column (or any column) of \(A \) is a linear combination of the columns of \(A \). (This holds for any matrix.)

§1.3 Ex. 29. The center of mass is \((1.3, .9, 0)\). The student must show the work to obtain this vector as a weighted average of the given vectors.
§1.4 Ex. 10. The vector equation is
\[
\begin{bmatrix} 8 \\ 5 \\ 1 \end{bmatrix} x_1 + \begin{bmatrix} -1 \\ 4 \\ -3 \end{bmatrix} x_2 = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}
\]
and the matrix equation is
\[
\begin{bmatrix} 8 & -1 \\ 5 & 4 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}.
\]

§1.4 Ex. 17. The student should put A into row echelon form in order to find the pivot positions. After doing this, we see that the pivot positions are: row 1 column 1, row 2 column 2, and row 3 column 4. Since row 4 does not contain a pivot position, it follows by Theorem 4 in §1.4 that the system $A\mathbf{x} = \mathbf{b}$ is not consistent for all \mathbf{b}.