Synthesis and Characterization of a Series of Zinc and Nickel Dithiolate Complexes

Olivia M. Campbell
Alfred University
Importance of Zinc

• Essential cofactor for many enzymes active in digestion and metabolism, and in transcription factors active in the control of gene expression.

• Plays critical roles in the nervous, reproductive and immune systems, as well as in embryonic development.

• The role of Zn can be structural, catalytic, or regulatory.
Zinc Fingers

Structural:

Zinc Fingers have a structural role, these domains coordinate Zn ions to help stabilize protein folds.

A Cys$_2$His$_2$Zn Finger (ZnS_2N_2) that interacts with the DNA major groove.
DNA IS the genetic information of most living organisms (B-DNA form shown)

Proteins bind at grooves, using specific binding: H-bonds, and non specific binding: van der Waals interactions, generalized electrostatic interactions.
Importance of Zinc

• Catalytic:
The most common motif in Zn enzymes is a tetrahedral Zn ligated by three amino acid residues (typically His, Glu, Asp, or Cys), with the fourth being occupied by the catalytically important water (or hydroxide) ligand.

eg. Alcohol Dehydrogenase (ADH): converts alcohols to aldehydes/ketones. [humans ADH breaks down alcohols; in yeast/bacteria ADH catalyzes the opposite (fermentation)]

\[
\text{CH}_3\text{CH}_2\text{OH} + \text{NAD}^+ \rightarrow \text{CH}_3\text{CHO} + \text{NADH} + \text{H}^+
\]
The human ADH isozyme is a dimer containing two Zn$^{2+}$ ions. One Zn is coordinated to four Cys, and plays a structural role. The other Zn is coordinated to two Cys and one His, is catalytic and holds the hydroxyl group of the alcohol in place.
Importance of Nickel

• Ni plays important roles in microorganisms and plants:
• The NiFe-hydrogenases (H_2ases) contain Ni in addition to a series of iron-sulfur clusters.
• A nickel-tetrapyrrole coenzyme F_{430}, is present in the methyl coenzyme M reductase which powers methanogenic archaea.
• One of the carbon monoxide dehydrogenase (CODH) enzymes consists of an Fe-Ni-S cluster.
• Other enzymes: glyoxalases (glx), superoxide dismutases (SOD)
The active site of NiFe hydrogenases contains a Ni center coordinated by four invariant Cys thiolates two of which are terminally bound. The other two Cys thiolates bridge the Ni and the Fe centers. The latter is further coordinated by one CO and two CNs. In the oxidized form, there is a putative oxo ligand (L). The coordination of Fe is octahedral and that of Ni square pyramidal.
NiFe-Hydrogenases & Energy

Why Hydrogen (H_2)?
It is lightweight, abundant, and when used as fuel generates only H_2O.

\[H_2(g) + O_2(g) \rightarrow H_2O \text{ (liq)} \]

<table>
<thead>
<tr>
<th>Fuel</th>
<th>kJ/kg (specific enthalpy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthracite</td>
<td>32,500 - 34,000</td>
</tr>
<tr>
<td>Bituminous coal</td>
<td>17,000 - 23,250</td>
</tr>
<tr>
<td>Butane</td>
<td>49,510</td>
</tr>
<tr>
<td>Charcoal</td>
<td>29,600</td>
</tr>
<tr>
<td>Coke</td>
<td>28,000 - 31,000</td>
</tr>
<tr>
<td>Diesel</td>
<td>44,800</td>
</tr>
<tr>
<td>Ethanol</td>
<td>29,700</td>
</tr>
<tr>
<td>Gasoline</td>
<td>47,300</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>141,790</td>
</tr>
<tr>
<td>Methane</td>
<td>55,530</td>
</tr>
<tr>
<td>Oils, vegetable</td>
<td>39,000 - 48,000</td>
</tr>
<tr>
<td>Propane</td>
<td>50,350</td>
</tr>
<tr>
<td>Wood (dry)</td>
<td>14,400 - 17,400</td>
</tr>
<tr>
<td>Kerosene</td>
<td>35,000</td>
</tr>
</tbody>
</table>
WE CAN EXPLOIT HYDROGENASES: Biomimetic Chemistry

Active Site of Ni/Fe Hydrogenase

Ni-chemistry

Fe-chemistry
Synthesis of the ligands

- The generic method involved a one-step synthesis of the ligand:
 - The appropriate sulfide is added to the diamine in benzene. The reaction is kept under high temperature (90°C) and pressure in a reaction tube for 24hrs. The reaction mixture then washed with water, dried and reduced on a rotary evaporator. All the ligands are *smelly viscous oils*.
 - NMR and IR data is consistent with the formulations.
- Example:
Use of **Schlenk techniques** since the reagents and products are **air/moisture sensitive**
A Rotary Evaporator
Synthesis of the Ni & Zn Complexes

- The complexes were synthesized using a template reaction with Zn$^{2+}$ or Ni$^{2+}$ acetate salts in MeOH/EtOH solvent. After 24hrs, the reaction volume is reduced, ether was carefully layered and the mixture was placed in a refrigerator for several days to generate crystalline material.
- IR analysis was consistent with the formulations and structures given.
- Ni complexes: red/brown colored
- Zn complexes: white colored

Molecular structure of a Zn complex (Pr-Pr ligand)

(ORTEP plot) Molecular structure of a Ni complex (Pr-Pr ligand)
Complexes Synthesized & Characterized in 8 weeks:

(The work on Co is not reported here)

All appropriate characterization data (NMR, IR) is consistent with formulations and structures given for each complex.
Future...?

• Some of the problems encountered along the way can be avoided if I paid more attention to the air sensitivity aspect of the synthesis.
• Ran out of time, but would have liked to have made more ligands, particularly those that add more features to the α-C adjacent to the thiolates.
• If had more time, would like to have varied the N_2S_2 donor ligand set, perhaps N_3S, NS_3, S_4.
• Different metals: there is an interest in making ‘similar’ lanthanide complexes, particularly in the biophysical world.
• Kinetic and thermodynamic studies still remain
• Of course, do these complexes have functionality – are these biomimetics functional or just structural mimics?
Acknowledgments:

- I am grateful to the NSF for their generous funding of the REU.
- Dr. R. Sairam and his colleagues at Penn State Harrisburg for creating and kindly hosting the Biotech NSF-REU program.
- Dr. B. Chohan for his meticulous mentoring, for constantly reminding me of the ‘bigger picture’, and for pushing me through the long summer of research.
- My puppy!