Due Tuesday 21st April

1. As in homework 11 call a set \(h \) of distinct non-negative integers \(h_1, \ldots, h_k \) *sf–admissible* when there is no prime \(p \) such that every residue class modulo \(p^2 \) contains at least one of them. Let \(S(x; h) \) denote the number of \(n \leq x \) such that \(n + h_1, \ldots, n + h_k \) are simultaneously squarefree. Given a \(k \)-tuple of positive integers \(d = d_1, \ldots, d_k \) let \(d \) denote the number of \(n \) such that \(n + h_1, \ldots, n + h_k \) are simultaneously squarefree. Let \(\nu_p(h) \) denote the number of different residue classes modulo \(p^2 \) amongst the \(h_1, \ldots, h_k \).

 (i) Prove that \(\rho(d) = d \sum_{\text{lcm}[d_1, \ldots, d_k] = m} g(m) \) and \(\rho^*(d) = d \sum_{\text{lcm}[d_1, \ldots, d_k] = m} \frac{2 \omega(m)}{m^2} \) \(\ll y^{\varepsilon-1} \)

 and deduce that

 \[
 T_k(x, y) = x \sum_{m=1}^\infty \frac{g(m)}{m^2} + O(xy^{\varepsilon-1})
 \]

 where

 \[
 g(m) = \sum_{[d_1, \ldots, d_k] = m} \mu(d_1) \ldots \mu(d_k) \rho^*(d).
 \]

 (ii) Prove that \(g(m) \) is multiplicative and has its support on the squarefree numbers.

 (v) Deduce that

 \[
 \sum_{m=1}^\infty \frac{g(m)}{m^2} = \prod_p \left(1 + g(p)p^{-2} \right).
 \]

 (vi) Prove that \(1 + g(p)p^{-2} = 1 - \nu_p(h)p^{-2} \).

 (vii) Prove that

 \[
 S(x; h) = x \prod_p \left(1 - \frac{\nu_p(h)}{p^2} \right) + O(x^{1-\varepsilon})
 \]

 and hence that if \(h \) is sf–admissible, then there are infinitely many \(n \) such that \(n + h_j \) are simultaneously square free for \(j = 1, \ldots, k \).

2. Find the minimal diameter of 20–tuples which are sf–admissible, i.e. \(\max h_j - h_i \) is minimal.