Math 568 Number Theory II, Spring 2016, Problems 6

Due Tuesday 22nd February

1. (i) Show that if \(\alpha(s) = \sum a_n n^{-s} \) has abscissa of convergence \(\sigma_c < \infty \), then
 \[
 \lim_{\sigma \to \infty} \alpha(\sigma) = a_1.
 \]

(ii) Show that if \(a_1 = 0 \), then there is no halfplane in which \(1/\alpha(s) \) can be written as a convergent Dirichlet series.

(iii) Show that there is no halfplane in which \(1/\zeta'(s) \) can be written as a convergent Dirichlet series. (Of course, this corresponds to log not having an inverse in \(\mathbb{A}, * \).)

2. Determine \(\sum \varphi(n)n^{-s} \), \(\sum \sigma(n)n^{-s} \), and \(\sum |\mu(n)|n^{-s} \) in terms of the zeta function (here \(\sigma(n) = \sum_{m|n} m \)).

3. Let \(\sigma_a(n) = \sum_{d|n} d^a \). Show that
 \[
 \sum_{n=1}^{\infty} \sigma_a(n)\sigma_b(n)n^{-s} = \zeta(s)\zeta(s-a)\zeta(s-b)\zeta(s-a-b)/\zeta(2s-a-b)
 \]
 when \(\sigma > \max (1, 1 + \Re a, 1 + \Re b, 1 + \Re(a + b)) \).

4. Let \(t(n) = (-1)^{\Omega(n)-\omega(n)} \prod_{p|n} (p-1)^{-1} \), and put \(T(s) = \sum_n t(n)n^{-s} \).
 (a) Show that for \(\sigma > 0 \), \(T(s) \) has the absolutely convergent Euler product
 \[
 T(s) = \prod_p \left(1 + \frac{1}{(p^s - 1)(p^s + 1)}\right).
 \]

(b) Determine all (complex) zeros of the function \(1 + 1/((p-1)(p^s + 1)) \).

(c) Show that the line \(\sigma = 0 \) is a natural boundary of the function \(T(s) \), that is, no point on the line can be a point of analyticity of the function (or its analytic continuation).