1. Summary of order axioms from class (slightly different from the textbook): There is a relation “<” which satisfies the following axioms. \(a, b, c \) denote real numbers.

O1. Exactly one of \(a < b, a = b, b < a \) holds. O2. If \(a < b \) and \(b < c \), then \(a < c \). O3. If \(a < b \), then \(a + c < b + c \) for all \(c \). O4. If \(a < b \) and \(0 < c \), then \(ac < bc \).

The expression \(a > b \) means \(b < a \). We also use \(a \leq b \) to mean “either \(a < b \) or \(a = b \)”.

Prove, referring as necessary to the above axioms, that if \(x \) and \(y \) are real numbers with \(0 < x < y \), then \(0 < x^3 < y^3 \).

By O4), \(0 = 0. x < x, x = x^2 \) and \(0 = 0. x^2 < x, x^2 = x^3 \). Also \(x^3 = x^2, x < x^2, y \), \(0 = 0. y < x, y, x^2, y = (x, y), x < (x, y), y = x, y^2, x, y^2 = y^2, x < y^2, y = y^3 \). Hence, by O2), \(x^3 < x^2, y < x, y^2 < y^3 \).

2. Find all real numbers \(x \) that satisfy \(-1 < 2|x - 1| - |3x + 2| < 1\)

There are three cases to consider. (i) \(x < -2/3 \). Then the inequality becomes \(-1 < 2(1 - x) + 3x + 2 < 1 \) which is equivalent to \(-5 < x < -3 \). (ii) \(-2/3 \leq x < 1 \). Then we have \(-1 < 2(1 - x) - 3x - 2, \) i.e. \(-1/5 < x < 1/5 \). (iii) \(1 \leq x \). Now \(-1 < 2(x - 1) - 3x - 2 < 1 \) so that \(-1 < -x < 1 \), i.e. \(-1 < x < 1 \) which is excluded since \(1 \leq x \). Hence \(x \in (-5, -3) \cup (-1/5, 1/5) \).

3. Determine the set \(A = \left\{ x : \frac{x + 5}{x^2 + 2} < \frac{2}{x} \right\} \).

We have \(x^2 + 2 \geq 2 > 0 \) always. (a) First consider \(x > 0 \). Then \(\frac{x + 5}{x^2 + 2} < \frac{2}{x} \) iff \(x(x + 5) < 2(x^2 + 2) \) iff \(x^2 + 5x < 2x^2 + 4 \) iff \(0 < x^2 - 5x + 4 \) iff \(0 < (x - 4)(x - 1) \). This holds iff either \(x - 4 > 0 \) and \(x - 1 > 0 \) OR \(x - 1 < 0 \) and \(x - 4 < 0 \). Thus \(x > 4 \) or \(0 < x < 1 \). (b) Now suppose \(x < 0 \). Then \(\frac{x + 5}{x^2 + 2} < \frac{2}{x} \) holds iff \(0 > (x - 4)(x - 1) \). This holds either \(x - 4 < 0 \) and \(x - 1 < 0 \) or \(x - 1 > 0 \) and \(x - 4 < 0 \). In either case \(x > 1 \) contradicting \(x < 0 \). Thus the complete answer is \(A = (0, 1) \cup (4, +\infty) \).

4. Let \(A, B \) be non-empty sets of real numbers which are bounded above, and let \(A + B \) denote the set of numbers of the form \(a + b \) with \(a \in A \) and \(b \in B \). (i) Prove that \(\text{sup}(A + B) \) exists. (ii) Prove that \(\text{sup}(A + B) \leq \text{sup}A + \text{sup}B \). (iii) Let \(\delta > 0 \). Prove that there are \(a \in A \) and \(b \in B \) such that \(a > \text{sup}A - \delta \) and \(b > \text{sup}B - \delta \). (iv) Deduce that \(\text{sup}(A + B) = \text{sup}A + \text{sup}B \).

(i) \(A \) and \(B \) are non-empty, so there exists an \(a \in A \) and a \(b \in B \) in \(A \). Hence \(a + b \in A + B \) so \(A + B \) is non-empty. Moreover every \(a \in A \) satisfies \(a \leq \text{sup}A \) and every \(b \in B \) satisfies \(b \leq \text{sup}B \), and every element \(c \) of \(A + B \) is of this form. Hence \(c \leq \text{sup}A + \text{sup}B \) (*). Thus \(A + B \) is non-empty and bounded above, so by the Continuum Property \(\text{sup}(A + B) \) exists. (ii) Moreover, by (*), \(\text{sup}A + \text{sup}B \) is an upper bound for \(A + B \). (iii) If we had \(a \leq \text{sup}A - \delta \) for every \(a \in A \), then \(\text{sup}A \) would not be the least upper bound for \(A \). Hence there is an element \(a \) of \(A \) with \(a > \text{sup}A - \delta \). Likewise there is a \(b \in B \) with \(b > \text{sup}B - \delta \). (iv) By (ii) \(\text{sup}(A + B) \leq \text{sup}A + \text{sup}B \). We argue by contradiction. Suppose we have strict inequality. Let \(\delta = \frac{1}{2} (\text{sup}A + \text{sup}B - \text{sup}(A + B)) \). By (iii) there are \(a \in A, b \in B \) such that \(a + b > \text{sup}A + \text{sup}B - 2\delta \). But by the definition of \(\delta \) the RHS is \(\text{sup}(A + B) \) and this contradicts the fact that \(a + b \leq \text{sup}(A + B) \).