1. Find the volume of the solid obtained by revolving the region bounded by the curve $y = e^x$ and the lines $y = 0$, $x = 0$, and $x = 2$ about the x-axis.

2. Find the volume of the solid generated by revolving the region in the first quadrant bounded by the curve $y = x^2$ and the line $y = 4$ about the y-axis.

3. Find the volume of the solid generated by revolving the region bounded by the curves $y = x^3$ and $y = \sqrt{x}$ about the x-axis.
4. Find the volume of the solid generated by revolving the region used in question 3 about the y-axis.

5. Let \(R \) be the region bounded by the curve \(y = x^2 \) and the lines \(y = 0 \) and \(x = 2 \). Set up integrals for the volumes of the solids generated by revolving \(R \) about

 a. the x-axis
 b. the y-axis
 c. the line \(y = 5 \)
 d. the line \(x = 3 \)