(1) (3 pts) State the three conditions that a relation must satisfy to be a partial ordering (state what these conditions mean, not only their names).

A relation R on X is a partial ordering if it is reflexive (xRx for all $x \in X$), weakly antisymmetric (xRy and yRx implies $x = y$), and transitive (xRy and yRz implies xRz).

(2) (4 pts) Verify that the relation R on $\{a, b, c, d\}$ given by

$R = \{(a,a), (a,b), (a,c), (a,d), (b,b), (b,d), (c,c), (c,d), (d,d)\}$

is a partial ordering.

We must check the three conditions listed in the last problem. It is reflexive as $(a,a), (b,b), (c,c), (d,d) \in R$. It is weakly antisymmetric as we can see that we never have any pair of relations xRy and yRx in the set except for those listed when we checked that the relation is reflexive. To see that it is transitive, we consider pairs of elements in R of the form $(x,y), (y,z)$. If $x = y$ (resp. $y = z$), there is nothing to check as this says that xRx and yRx (resp. xRy and yRy), which clearly implies that xRz. So we only have to check pairs which do not include the four elements $(a,a), (b,b), (c,c), (d,d)$. Namely, we note that $(a,b), (b,d) \in R$, and indeed $(a,d) \in R$, while $(a,c), (c,d) \in R$ and $(a,d) \in R$. This exhausts all possibilities.

(3) (3 pts) The relation R on $X = \{1, 2, 3, 4\}$ given by

$R = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)\}$

is an equivalence relation (you don’t have to prove this). List the equivalence classes of R.

We find the equivalence classes partitioning X by writing down the classes corresponding to different elements until we have hit everything. Starting with 1, we see that $[1]_R$, which is the set of elements related to 1, is equal to $[1]_R = \{1, 2\}$. We have already found that 2 is in this first class, and the elements 3 and 4 are only related to themselves, and hence lie in their own classes. Thus, the equivalence classes are $\{1, 2\}, \{3\}, \{4\}$.