Event

• An event is something that either happens or doesn't happen, or something that either is true or is not true

• Examples:
 • You get cancer
 • A randomly selected person is obese
 • A particular mutation occurs
 • It snows tonight

Probability

• The probability of event A, P(A), is the probability that A will happen
• Probability always refers to an event
• Probability is always between 0 and 1
 • P(A) = 1 means A will definitely happen
 • P(A) = 0 means A will definitely not happen

Questions of the Day

How common is breast cancer?

How does breast cancer risk depend on other variables?

Ways of Expressing Probability

• 1 in 8 women will get breast cancer
• 1/8 of women will get breast cancer
 • The proportion of women who will get breast cancer is 1/8, or 0.125.
• 12.5% of women will get breast cancer
• The probability of breast cancer for a female is 0.125
 • These statements are all saying the same thing
Relative Frequency Table

- Probability statements can be directly translated into a relative frequency table:

<table>
<thead>
<tr>
<th>Get Breast Cancer</th>
<th>Do not Get Breast Cancer</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.125</td>
<td>0.875</td>
<td>1</td>
</tr>
</tbody>
</table>

Frequency Table

- Probability statements can also be translated into a frequency table, although unlike data description, the total is arbitrary:

<table>
<thead>
<tr>
<th>Get Breast Cancer</th>
<th>Do not Get Breast Cancer</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Get Breast Cancer</th>
<th>Do not Get Breast Cancer</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>875</td>
<td>1000</td>
</tr>
</tbody>
</table>

- Either of these are equally valid for probability calculations!

Odds

If \(p \) denotes the probability of an event, the **odds** are defined as

\[
\text{odds} = \frac{p}{1-p}
\]

- Interpreting odds
 - Odds of 1 indicate 50/50
 - \(p < 0.5 \) yield odds < 1
 - \(p > 0.5 \) yield odds > 1
- Odds of 3, or 3:1, mean that out of 4 times, we would expect the variable to be in that category 3 times and out of that category 1 time

Breast Cancer Odds

\[
\text{odds} = \frac{1/8}{1-1/8} = \frac{1/8}{7/8} = \frac{1}{7}
\]

- Commonly expressed as 1:7 or 1/7
- The odds of a woman getting breast cancer are 1:7
- For every one woman who will get breast cancer, 7 women will not.

Conditional Probability

- \(P(A \mid B) \) is the probability of \(A \) if we know \(B \) has happened or is true
- This is read in multiple ways:
 - “probability of \(A \) if \(B \)”
 - “probability of \(A \) given \(B \)”
 - “probability of \(A \) conditional on \(B \)”
- You may also see this written as \(P(A \mid B) \)

Conditional Probability

- The probability and odds that we calculated are restricted only to females, so we are implicitly **conditioning** on the fact that gender is female.
- **For females**, what’s the probability of getting breast cancer?
- What proportion of women will get breast cancer?
- **Conditional probability** is the probability of an event, conditional on (or given) that another variable takes a specific value (gender = female)
• P(survival if advanced stage) = 0.27
• P(survival if early detection) = 0.98

What does 0.43% represent?

a) P(breast cancer if 30 – 39 years old)

b) P(30 – 39 years old if breast cancer)

What does this tell us?

a) P(breast cancer if first-degree relative)

b) P(first degree relative if breast cancer)

What does this tell us?

a) P(breast cancer if first-degree relative)

b) P(first degree relative if breast cancer)

c) P(breast cancer if no family history) = 0.15

These are given as facts, but clearly there is some uncertainty! (or different populations being studied...)
• P(breast health routine if female) = 0.599
• P(breast health routine if male) = 0.212

Conditional Probability

• P(breast cancer if female) = 0.125
• What’s P(female if breast cancer)? 0.99
• P(A if B) is NOT the same as P(B if A)!!!
• This is an important point, and something that is easily confused. Be careful with conditioning!

Odds Ratio

The odds ratio (OR) is the ratio of the odds in one group to the odds in the other group:

\[
OR = \frac{p_1(1-p_2)}{p_2(1-p_1)}
\]

• Odds ratios of 1 indicate no difference between the groups (no relationship between the two variables)

Odds Ratio

\[
OR = \frac{odds of getting breast cancer for males}{odds of getting breast cancer for females}
\]

\[
P(\text{breast cancer if female})
\]

\[
\frac{1 - P(\text{breast cancer if female})}{P(\text{breast cancer if male})}
\]

\[
\frac{1}{1 - \frac{1}{8}} = \frac{7}{799} = 114.14
\]

\[
\frac{1 - 1/800}{1/800}
\]

Cats and Schizophrenia

Table 1: Cat ownership in NAMI families and controls.

<table>
<thead>
<tr>
<th>Case</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>80/185</td>
<td>89/199</td>
</tr>
<tr>
<td>69/252</td>
<td>70/255</td>
</tr>
<tr>
<td>12/120</td>
<td>13/132</td>
</tr>
</tbody>
</table>

-produces are derived from chis squares, 2-tailed, ORs shown as mean (95% CI)
Breast Cancer Screening

- 1% of women at age 40 who participate in routine screening have breast cancer.
- 80% of women with breast cancer get positive mammographies.
- 9.6% of women without breast cancer get positive mammographies.
- A 40-year old woman participates in routine screening and has a positive mammography. What's the probability she has cancer?

What is this asking for?

a) \(P(\text{cancer} \mid \text{positive mammography}) \)

b) \(P(\text{positive mammography} \mid \text{cancer}) \)

c) \(P(\text{positive mammography} \mid \text{no cancer}) \)

d) \(P(\text{positive mammography}) \)

e) \(P(\text{cancer}) \)

100,000 women in the population

- 1% have cancer
- 99% are cancer-free

800 test positive
200 test negative
9,504 test positive
89,496 test negative

Thus, \(\frac{800}{800 + 9,504} = 7.8\% \) of positive results have cancer (you could also get this by creating a two-way table)
To Do

- Do HW 2.1 (due Friday, 9/25)