Directions: Please answer the following questions and make sure your answer are legible. If you don’t show work and/or I can’t follow it, I won’t give partial credit. You may use a calculator (not the calculator function on other technology) and the Formula Sheet that I provide you, nothing else. Good Luck.

1. (7 points) For each of the following indicate:
 - If it is an annuity or not an annuity
 - For those that are annuities:
 indicate if the large sum of money is a Present Value or Future Value and
 indicate if it is an Ordinary Annuity or Annuity Due.

 (a) Three years ago the Dauntless Corporation opened an account and immediately deposited $2,000. They continued depositing $2,000 every quarter into this account, and today the account is worth $26,231.93.

 \[\text{Annuity: Future V, Ann Due} \]

 (b) The Candor Corporation is trying to save money for a big project in four years. They open an account today, and each quarter will deposit their excess profits into the account. They are hoping to have $50,000 at the end of 4 years.

 \[\text{Not Annuity} \]

 (c) Today the Erudite Corporation needed to borrow $150,000 for improvements to their headquarters. To repay the loan they will make monthly payments of $2,735 for the next 5 years.

 \[\text{Annuity, Present V, Ord Annuity (Ord Ann)} \]

2. (2 points) Calculate \(s_{32|0.04} \) with \(n = 32 \) and \(i = 0.04 \). (In other words, calculate \(s_{32|0.04} \))

 \[
 s_{32|0.04} = \frac{(1 + 0.04)^{32} - 1}{0.04} = 62,701.46867
 \]

You’re not done yet.
3. You deposit $85.50 monthly into an account paying 6.35% for 15 years.

 (a) (1 point) Find \(n \).
 (b) (1 point) Find \(i \).
 (c) (3 points) Find the future value annuity factor.
 (d) (1 point) Find the future value of the annuity.

\[n = 15 \times 12 = 180 \quad (\text{a}) \]
\[i = 0.0635/12 \quad (\text{b}) \]
\[S_{\overline{n|}} = \frac{(1 + 0.0635/12)^{180} - 1}{0.0635/12} = 299.6561459 \quad (\text{c}) \]
\[FV = PMT \times S_{\overline{n|}} \]
\[FV = 85.50 + (\quad) \]
\[FV = 25,620.60 \]