Last time

Thm 22A \(s_1 : V \rightarrow 1 \mathbb{Q} \) \(s_2 : V \rightarrow 1 \mathbb{Q} \)
agree on all variables occurring free in \(\varphi \), then
\[l = \varphi [s_3] \iff l = \varphi [s_2] \]

Therefore we can think of each formula with free variables among \(V_1, \ldots, V_n \) as inducing a function \(1 \mathbb{Q}^n \rightarrow \{ F, T \} \) where it returns

\[\begin{cases} T & \text{if } l = \varphi [\alpha_1, \ldots, \alpha_n] \\ F & \text{if } l \neq \varphi [\alpha_1, \ldots, \alpha_n] \end{cases} \]

Example \(\forall \mathbb{Q}^n \)

\((N : j \leq s, S, 0) \)

\[l = \forall V_2, P V_1 V_2 [0] \]
\[\neq \forall V_2, P V_1 V_2 [5] \]

Recall

\[l = \varphi [\alpha_1, \ldots, \alpha_n] \]
\[\neq \varphi [s_3] \]
for some (or all)
\(s : V \rightarrow 1 \mathbb{Q} \) s.t.
\(s(v_i) = a_i \quad (i \leq n) \)
Corollary 220. For a sentence σ, either

- \mathcal{A} satisfies σ with every function $s : V \rightarrow |\mathcal{A}|$.
- \mathcal{A} does not satisfy σ with any such function.

(i.e. it is either all s or no s)

Def 12. (a) holds, then say that

- σ is true in \mathcal{A}
- $\mathcal{A} \models \sigma$
- \mathcal{A} is a model of σ.

Also \mathcal{A} is a model of a set of sentences Σ if \mathcal{A} is a model of each $\sigma \in \Sigma$.

Examples

(A) \(R = (R; 0, 1, +, x) \)
\(Q = (Q; 0, 1, +, x) \)

\(\exists x \ (x \cdot x = 1+1) \) is true in \(R \)

is not true in \(Q \)

(8) Parameters: \(A, P \) (2-place predicate)
\(\mathcal{A} = (\{A\}; P^a) = (A; R) \)

\uparrow \text{set} \uparrow \text{binary relation}

Classes of models:
\((A; R) \) is a model of...

1. \(\forall x \forall y \ x = y \)
 iff \(A \) has exactly one element, \(A = \{a\} \)
 \(R \) doesn't matter, so we have two choices
 \(R = \emptyset \) or \(R = \{<a, a>\} \)

2. \(\forall x \forall y \ P_{xy} \)
 iff \(A \) is any nonempty set and \(R = A \times A \)

3. \(\forall x \forall y \neg P_{xy} \)
 iff \(A \) is any nonempty set and \(R = \emptyset \)

4. \(\forall x \exists y \ P_{xy} \)
 iff \(A \) is any nonempty set and \(\text{dom} R = A \)

5. One can also find sentences \(\exists a: \exists b \ (a, b) \in R \)
 saying \(\{a\} \) has exactly six elements,
 or saying \(P^a \) defines a function.
Logical implication

In sentential logic we used \(\models \) to mean "tautological implication". Here we will use \(\models \) to mean something slightly different.

Def. Let \(\Gamma \) be a set of well-formed formulas (wffs).
Let \(\varphi \) be a wff.
 Say \(\Gamma \) logically implies \(\varphi \) \((\Gamma \models \varphi) \)
iff for every structure \(\mathcal{A} \) for the language and every function \(s: \mathcal{V} \rightarrow \mathcal{A} \),
if \(\mathcal{A} \) satisfies every member of \(\Gamma \) with \(s \),
then \(\mathcal{A} \) also satisfies \(\varphi \) with \(s \).

Notation. \(\models \varphi \) instead of \(\vDash_{\mathcal{A}} \models \varphi \)
\(\models \varphi \) instead of \(\vDash_{\mathcal{A}} \models \varphi \)

\(\varphi \) is valid iff \(\models \varphi \).

\(\varphi \) and \(\psi \) are logically equivalent iff \(\models \varphi = \models \psi \)
iff \(\models \varphi = \models \psi \) and \(\models \psi = \models \varphi \).

Cor 22C
For a set \(\Sigma \) of sentences,
\(\Sigma \models \varphi \) iff every model of \(\Sigma \) is also a model of \(\varphi \). A sentence \(\varphi \) is valid iff it is true in every structure.