A list of important tautologies

1. \(\land, \lor, \iff \) are associative and commutative.
 For example,
 \[
 ((A \land (B \land C))) \iff ((A \land B) \land C))
 \]
 \[
 ((A \land B) \iff (B \land A))
 \]

2. Distributive Laws
 \[
 (A \land (B \lor C)) \iff ((A \land B) \lor (A \land C))
 \]
 \[
 (A \lor (B \land C)) \iff ((A \lor B) \land (A \lor B))
 \]

3. Negation
 \[
 ((\neg \neg A)) \iff A)
 \]
 \[
 ((\neg (A \rightarrow B)) \iff (A \land (\neg B)))
 \]
 \[
 ((\neg (A \iff B)) \iff ((A \land (\neg B)) \lor ((\neg A) \land B)))
 \]

4. De Morgan's laws
 \[
 ((\neg (A \land B)) \iff (\neg A) \lor (\neg B))
 \]
 \[
 ((\neg (A \lor B)) \iff (\neg A) \land (\neg B))
 \]

5. Excluded middle
 \[(A \lor \neg A) \]
 Contradiction \[(\neg (A \land (\neg A))) \]
 Contraposition \[((A \rightarrow B) \iff (\neg B) \rightarrow (\neg A)) \]
 Exportation \[((A \land B) \rightarrow C) \iff (A \rightarrow (B \rightarrow C)). \]
Some basic properties of t =

Theorem 1. If $\Sigma \models \alpha$ and $\Sigma \cup \delta \models \beta$, then $\Sigma' \models \beta$.

Proof Assume $\Sigma \models \alpha$ and $\Sigma \cup \delta \models \beta$. We want to show $\Sigma \models \beta$.

This, by definition, is the same as showing for all $\nu: \delta \to \{T, F\}$, if for all $\gamma \in \Sigma'$, $\nu(\gamma) = T$, then $\nu(\beta) = T$, where δ is exactly the set of sentence symbols in β and Σ'.

The problem is that δ may not contain the sentence symbols from α.

Lemma. (Exercise #6 on p. 27)

Let δ be a set of sentence symbols which contain all those in Σ and β (and possibly more). Then $\Sigma \models \beta$ iff for all $\nu: \delta \to \{T, F\}$, if for all $\gamma \in \Sigma$, $\nu(\gamma) = T$, then $\nu(\beta) = T$.
(proof continued...)

Let \mathcal{S}' be the sentence symbols in
E, α, and β.
Let $\nu: \mathcal{S'} \to \{T, F\}$ be an arbitrary truth
assignment.

By the lemma, it is enough

Assume for all $\gamma \in E$ that $\nu(\gamma) = T$.
Then, since $E \vdash \alpha$, we have $\nu(\alpha) = T$
(using the Lemma since \mathcal{S}' may have more
sentence symbols than E and α).
Then for all $\gamma \in E \cup \{\alpha\}$, $\nu(\gamma) = T$
since either $\gamma \in E$ or $\gamma = \alpha$.
Since $E \cup \{\alpha\} \vdash \beta$, then $\nu(\beta)$, as desired.
Therefore, $E \vdash \beta$. \hfill \square

Similarly, we can show the following:

Corollary If $E \vdash \alpha$ and $\alpha \vdash \beta$, then $E \vdash \beta$.

Proof Assume $E \vdash \alpha$ and $\alpha \vdash \beta$.
Then $\alpha \vdash \beta$.
By the previous theorem (with $E = \emptyset$)
we have $\vdash \beta$. \hfill \square
Induction and Recursion

In mathematics and computer science, there is a special type of way to define a set of objects.

1. Take a large set of objects U.
2. Take a small subset of objects $B \subseteq U$.
3. Let C be the smallest subset of U containing B that is closed under all the operations in some class F.

(Such a definition is called a recursive definition or sometimes an inductive definition.)

Examples

1. Natural numbers
 \[U = \mathbb{N} \]
 \[B = \{0\} \]
 \[F = \{S\} \quad \text{where} \quad S(n) = n+1 \]

2. Integers
 \[U = \mathbb{Z} \]
 \[B = \{0\} \]
 \[F = \{S, P\} \quad \text{where} \quad S(n) = n+1 \quad \text{and} \quad P(n) = n-1 \]

 Notice 0, $S(P(0))$, and $P(S(0))$ are equal.

3. Wffs
 \[U = \text{set of expressions} \]
 \[B = \text{set of sentence symbols} \]
 \[F = \{\mathcal{E}, \mathcal{E}_v, \mathcal{E}_w, \mathcal{E}_r\} \]
For simplicity, let us assume \(\mathcal{F} = \{ f, g \} \)
where \(f: U \times U \to U \) and \(g: U \to U \)

Two ways to define \(C \):

From the top down

Say \(S \subseteq U \) is closed under \(f \) and \(g \) iff

whenever \(x, y \in S \) then \(f(x, y) \in S \) and \(g(x) \in S \)

Say \(S \subseteq U \) is inductive iff

1. \(B \subseteq S \) and
2. \(S \) is closed under \(f \) and \(g \).

Let \(C^* = \bigcap \{ S \subseteq U \mid S \text{ is inductive} \} \)

Thm \(C^* \) is inductive

Proof: We need to show both conditions.

1. **\(B \subseteq C^* \)**

 Assume \(x \in B \), then for all inductive \(S \), \(x \in S \) since \(B \subseteq S \).

 Therefore \(x \in C^* \) by the definition of \(\cap \).

 Hence \(B \subseteq C^* \).

2. **\(C^* \) is closed under \(f \) and \(g \)**

 Assume \(x, y \in C^* \).

 Let \(S \) be an arbitrary inductive set.

 Since \(C^* \subseteq S \), \(x, y \in S \).

 Then \(f(x, y), g(x) \in S \).

 Therefore \(f(x, y), g(x) \in C^* \) since \(S \) was arbitrary.

 Hence \(C^* \) is closed under \(f \) and \(g \). \(\square \)