(20 points) Consider the following rendezvous problem: a target satellite is in a circular orbit with \(a = 7500 \) km. The Space Shuttle must rendezvous with the target at \(t_f = 15000 \) s. The initial relative position and speed of the Shuttle are

\[
\begin{bmatrix}
-4 \\
-50 \\
5
\end{bmatrix} \text{ (km)} \quad \begin{bmatrix}
0.02 \\
0.07 \\
-0.1
\end{bmatrix} \text{ (km/s)}
\]

Calculate the

a.) required initial velocity \(\dot{\mathbf{r}}(0) \) to initiate the rendezvous maneuver.
b.) \(\Delta \dot{v} \) needed to initiate the rendezvous maneuver.

c.) relative velocity of \textit{arrival} at the target \(\dot{\mathbf{r}}(t_f) \)
d.) \(\Delta \dot{v} \) needed to complete the rendezvous, i.e., to achieve zero relative velocity.

\[
\mathbf{S}_{0}\,^{/n}:
\]

a.) \(\mathbf{\dot{r}}(t_f) = \mathbf{M}(t_f) \mathbf{\dot{r}}(0) + \mathbf{N}(t_f) \mathbf{\dot{r}}(0) \)

But at \(t_f \), \(\mathbf{\dot{r}}(t_f) = 0 \)

\(\mathbf{\dot{r}}(0) \)

Sign indicates \textit{after} impulse occurs.

\(\mathbf{0} = \mathbf{M}(t_f) \mathbf{\dot{r}}(0) + \mathbf{N}(t_f) \mathbf{\dot{r}}(0) \)

\(\mathbf{N}(t_f) = -\mathbf{M}(t_f)^{-1} \mathbf{M}(t_f) \mathbf{\dot{r}}(0) \)

First, evaluate \(\mathbf{M}(t_f), \mathbf{N}(t_f), \) and solve \(\mathbf{N}(t_f)^{-1} \)

\(\mathbf{N}(t_f) = \begin{bmatrix} 929 & 2940 & 0 \\ -2940 & 41282 & 0 \\ 0 & 0 & 929 \end{bmatrix} \)

\(\mathbf{N}(t_f)^{-1} = \begin{bmatrix} 0.0014 & 0.0001 & 0 \\ -0.0001 & 0 & 0 \\ 0 & 0 & 0.0011 \end{bmatrix} \) (calculated using Matlab)
\[\dot{\mathbf{v}}(0)^+ = -N(t_f)^{-1}M(t_f)\mathbf{v}(0) = \begin{bmatrix} 0.0018 \\ 0.0066 \\ 0.0023 \end{bmatrix} \text{ (km/s)} \]

b.) \[\Delta \mathbf{v}_o = \dot{\mathbf{v}}(0)^+ - \dot{\mathbf{v}}(0)^- = \mathbf{v}(0)^- = \text{rel. vel. before imp} \]
\[= \begin{bmatrix} 0.0018 \\ 0.0066 \\ 0.0023 \end{bmatrix} \text{ (km/h)} - \begin{bmatrix} 0.02 \\ 0.07 \\ -0.10 \end{bmatrix} = \begin{bmatrix} -0.0182 \\ -0.0634 \\ 0.1023 \end{bmatrix} \text{ (km/s)} \]

\[\Delta \mathbf{v}_o = \begin{bmatrix} 0.02 \\ 0.07 \\ -0.10 \end{bmatrix} \text{ (km/s)} \]

\[\mathbf{v}(0)^- = \begin{bmatrix} 0.02 \\ 0.07 \\ -0.10 \end{bmatrix} \text{ (km/s)} \]

c.) Use soln. to the C-W eqs. to calc. \(\mathbf{v}(t) \) at \(t = t_f \)
\[\mathbf{v}(t) = \Sigma(t)\mathbf{v}(0) + \mathbf{I}(t)\dot{\mathbf{v}}(0) \]
\[\dot{\mathbf{v}}(t_f) = \Sigma(t_f)\mathbf{v}(0) + \mathbf{I}(t_f)\dot{\mathbf{v}}(0) \]
\[\Sigma(t_f) = \begin{bmatrix} 3.04 & 0 & 0 \\ 0 & -0.276 & 0 \\ 0 & 0 & -ns \end{bmatrix} \begin{bmatrix} 0.0024 & 0 & 0 \\ -0.0083 & 0 & 0 \\ 0 & 0 & -0.0069 \end{bmatrix} \]
\[\mathbf{I}(t_f) = \begin{bmatrix} c & 2.5 & 0 \\ -2.5 & 4c - 3 & 0 \\ 0 & 0 & c \end{bmatrix} \begin{bmatrix} -0.4288 & 1.8068 & 0 \\ -1.8068 & -4.7153 & 0 \\ 0 & 0 & -0.4288 \end{bmatrix} \]
\[\dot{\mathbf{v}}(t_f) = \begin{bmatrix} 0.0066 \\ -0.0012 \\ -0.0054 \end{bmatrix} \text{ (km/s)} \]

\[\dot{\mathbf{v}}(t_f)^- = \dot{\mathbf{v}} \text{ before the second impulse is applied.} \]

\[\dot{\mathbf{v}}(t_f)^- = \begin{bmatrix} 0.0066 \\ -0.0012 \\ -0.0054 \end{bmatrix} \text{ (km/s)} \]

\(\dot{\mathbf{v}}(t_f)^+ \text{ must use } \dot{\mathbf{v}}(t_f)^+ \text{ since that is the rel. vel. after the first impulse that initiated the rendezvous trajectory.} \)
d.) To complete the rendezvous, need to achieve \(\dot{\vec{r}}(t_f)^+ = 0 \)

That is, after the second impulse \((t_f) \), rel vel. med. = 0.

\[
\Delta v_f = \dot{\vec{r}}(t_f)^+ - \dot{\vec{r}}(t_f)^-
\]

\[
= 0 - \dot{\vec{r}}(t_f)^-
\]

\[
\Delta v_f = \begin{bmatrix} -0.0006 \\ 0.0012 \\ 0.0054 \end{bmatrix} \text{ (km/s)}
\]
(15 points) A satellite must change its orbit to a circular orbit with radius $r_0 = 7800$ km. The satellite is presently in an elliptical orbit with $a = 9000$ km and $e = 0.24$.

a.) Determine the true anomaly where the Δv should occur.
b.) How many seconds after periapsis passage does the Δv occur?
c.) Calculate the magnitude of the Δv and its direction relative to the local horizontal plane at that point. (Draw a picture defining this angle!)

Solu:

a.) elliptical (initial) orbit has $p = a(1-e^2) = 8481.6$ km

new orbit (circular) intersects old orbit at $r_0 = 7800$ km.

$$7800 \text{ km} = \frac{r}{1+e\cos\theta}$$

$$\theta = \cos^{-1}\left[\frac{1}{e} \left(\frac{p}{r_0} - 1 \right) \right]$$

$$\theta = \pm 68.65 \text{ deg}$$

Either location will require same Δv because of symmetry.

b.) Use Kepler's eqn to calc. time after periapsis passage.

$$n(t-t_p) = E - e \sin E$$

$$E = 2 \tan^{-1}\left[\sqrt{1-e} \tan \frac{\theta}{2} \right]$$

$$= 0.9818 \text{ rad}.$$

$$n = \sqrt{\frac{\mu}{a^3}} = 7.3444 \times 10^{-4}$$

$$\rightarrow t-t_p = 1057.9 \text{ sec.}$$
c.)

Initial orbit: V_1 (at $\theta = 68.65\,\text{deg}$)

$$V_1 = \sqrt{2(\varepsilon_1 + \frac{\mu}{R_0})},$$

$$\varepsilon_1 = -\frac{\mu}{2a_1} = -22.144\,\text{km/s}^2$$

$\rightarrow V_1 = 7.6103\,\text{km/s}$.

Flight-pole angle $\beta_1 = \cos^{-1}\left(\frac{h}{R_0 V_1}\right) = \cos^{-1}\left(\frac{\mu R_0}{\mu R_0 V_1}\right)$

$\beta_1 = 11.6\,\text{deg}$.

Circular orbit will have

$$V_2 = \sqrt{\frac{\mu}{R_0}} = 7.1486$$

and flight-pole angle $\beta_2 = 0$ (circular orbit)

$\Delta\beta = \beta_2 - \beta_1 = -11.6\,\text{deg}$.

Calc. ΔV using law of cosines

$$\Delta V = \sqrt{V_1^2 + V_2^2 - 2V_1 V_2 \cos(\Delta\beta)}$$

$\Delta V = 1.5606\,\text{km/s}$
Can specify direction of $\Delta \vec{v}$ wrt local horiz. by using either angles γ or λ

Law of sines gives \[
\frac{\sin \beta_1}{\Delta v} = \frac{\sin \gamma}{v_1}
\]
\[
\gamma = \sin^{-1}(0.9806)
\]
\[
\gamma = 78.6 \text{ deg} \quad \text{or} \quad 101.4 \text{ deg.}
\]
Cannot determine which is correct!

Better use law of cosines here:

\[
v_1^2 = v_2^2 + (\Delta v)^2 - 2 v_2 \Delta v \cos \gamma
\]
\[
\cos \gamma = -0.1912
\]
\[
\gamma = 101.4 \text{ deg.}
\]

(or can specify λ, given by $\lambda = 180 - \gamma = 78.6 \text{ deg.}$)
(20 points) A lunar flight was initially launched into an orbit with flight-path angle \(\beta_0 = 20 \) degrees, \(v_0 = 8.28 \) km/s, and \(r_0 = 7000 \) km.

a.) Calculate the initial true anomaly \(\theta_0 \) and the eccentricity \(e_0 \).

b.) After exactly one rev the spacecraft was injected into a translunar trajectory without changing the line of apsides. Determine \(\beta \) and \(v \) immediately after applying the impulse if the new apogee is at the mean lunar distance \((3.844 \times 10^3) \) km.

Solu:

\[h = r_0 v_0 \cos \beta_0 = 5446.58 \text{ km/s} \]
\[p = h^2 \mu = 7442 \text{ km}. \]
\[\epsilon = \frac{v_0^2}{2} - \frac{\mu}{r_0} = -22.464 \text{ km/s}^2 \]
\[\rightarrow a = \frac{2}{\epsilon} = 8793.68 \text{ km}. \]

Must first calculate \(e_0 \) before calculating \(\theta_0 \).

\[a = \frac{p}{1 - e_0^2} \]
\[e_0^2 = 1 - \frac{a}{p} \]
\[e_0 = \sqrt{1 - \frac{a}{p}} = 0.392 \]

\[r_0 = \frac{p}{1 + e_0 \cos \theta_0} \rightarrow \theta_0 = \cos^{-1} \left[\frac{1}{e_0} \left(\frac{p}{r_0} - 1 \right) \right] \]
\[= \pm 80.7 \text{ deg.} \]

Since \(\beta_0 > 0 \), then \(\theta_0 \) lies in range \(0 < \theta < 180^\circ \).

\[\theta_0 = +80.7 \text{ deg.} \]

b.) The \(\Delta v \) will put us on a new orbit with the same line of apsides \(\rightarrow \) true anomaly will be the same immediately before and after the \(\Delta v \). Also, the radius stays the same immediately before and after \(\Delta v \).
\[r_o = \frac{p_1}{1 + e_1 \cos \theta_1} = \frac{p_0}{1 + e_0 \cos \theta_0}. \]

But \(\theta_1 = \theta_0 = 80.7 \text{ deg} \).

\[\frac{p_1}{1 + 0.1616 e_1} = 6998.6 \text{ km}. \]

\[p_1 = 6998.6 \text{ km} + (1130.97 \text{ km}) e_1 \] \hspace{1cm} (1)

Need another eqn involving \(p_1 \) and \(e_1 \).

\(\rightarrow \) Use the condition that apogee of new orbit has:

\(r_a = \text{mean lunar distance} = 3.844 \times 10^5 \text{ km} \).

\[r_a = \frac{p_1}{1 + e_1 \cos \theta_a} \]

\[\theta_a = 180^\circ \]

\[r_a = 3.844 \times 10^5 \text{ km} = \frac{p_1}{1 - e_1} \]

\[p_1 = 3.844 \times 10^5 \text{ km} - (3.844 \times 10^5 \text{ km}) e_1 \] \hspace{1cm} (2)

Subst. \(p_1 \) from Eq (2) into Eq (1):

\[3.844 \times 10^5 \text{ km} - (3.844 \times 10^5 \text{ km}) e_1 = 6998.6 \text{ km} + (1130.97 \text{ km}) e_1 \]

\[\rightarrow e_1 = 0.9787 \] (nearly a parabola!)

Can now calc. perigee radius:

\[r_p = \frac{p_1}{1 + e_1} = \frac{810.8 \text{ km}}{1 + 0.9787} \]

\[r_p = 4098.66 \text{ km} \]

\[a_1 = \frac{r_a + r_p}{2} = \frac{3.844 \times 10^5 \text{ km} + 4098.66 \text{ km}}{2} \]

\[e_1 = \frac{\mu}{2a_1} = -1.02 \text{ km/s}^2 \]
\[V_1 = \sqrt{2 \left(\frac{\varepsilon}{c^2} + \frac{1}{c^2} \right)} = 10.575 \text{ km/s} \]

New \(h_i = v_i \cos \beta_i = \sqrt{\mu r_i} = \sqrt{\mu \cdot 8110.8 \text{ km}^3/\text{s}^2} = 56859.17 \text{ km/s} \)

\[\cos \beta_i = \frac{h_i}{v_i} = \frac{h_i}{r_i v_i} = 0.7681 \]

\[\beta_i = 39.8 \text{ deg.} \]

(Select + value, since \(\Theta_i = +80.7 \text{ deg.} \))

\[\Theta_i = 39.8 \text{ deg.} \]

(15 points) This problem compares the \(\Delta v \) for impulsive thrust with that of low-level, continual thrust used in HW B4.

a.) Calculate the total \(\Delta v \) for a Hohmann transfer from \(r_1 = 7000 \text{ km} \) to \(r_2 = 37600 \text{ km} \).

b.) In HW B4, you numerically integrated the equations for a s/c that used constant transverse thrust to spiral out from 7000 km to 37600 km. The total \(\Delta v \) (called the low-thrust \(\Delta v \)) for that problem is simply

\[\Delta v_{LT} = \int_{r_1}^{r_2} a_t \cdot dt = a_t \cdot 10P \]

where \(P \) is the period of the initial circular orbit with radius \(r_1 = 7000 \text{ km} \), and \(a_t = 8 \times 10^{-5} \text{ km/s}^2 \).

Calculate \(\Delta v_{LT} \) and compare it with the \(\Delta v \) for a Hohmann transfer between circular orbits with radii of 7000 km and 37600 km. Why are these different?

c.) Calculate the transfer time for the Hohmann transfer in part a).

Solve:

a.) Hohmann xfer has \(a_H = \frac{\vec{r}_i + \vec{r}_f}{2} = 22300 \text{ km} \)

\[\varepsilon_H = \frac{\mu}{2a_H} = -8.937 \text{ km}^2/\text{s}^2 \]
\[V_p = \sqrt{2 \left(\frac{E_i}{m_i} + \frac{K_i}{m_i} \right)} \quad \text{but} \quad r_p = r_i \]
\[= 9.7986 \text{ km/s} \]

\[V_a = \sqrt{2 \left(\frac{E_a}{m_a} + \frac{K_a}{m_a} \right)} \quad \text{but} \quad r_a = r_a \]
\[= 1.8243 \text{ km/s} \]

\[V_i = \sqrt{\frac{\mu}{r_i}} = 7.5460 \text{ km/s} \quad \text{(vel on initial orbit)} \]

\[V_e = \sqrt{\frac{\mu}{r_e}} = 3.2559 \text{ km/s} \quad \text{(vel on final orbit)} \]

\[\Delta V_1 = V_p - V_i = 2.2526 \text{ km/s} \quad \text{(initial Hohmann xfer)} \]

\[\Delta V_2 = V_e - V_a = 1.4344 \text{ km/s} \quad \text{(circular at geostationary orbit)} \]

\[\Delta V_{\text{TOT}} \quad (H-xfer) = |\Delta V_1| + |\Delta V_2| = 3.6870 \text{ km/s} \]

b.) \[\Delta V_{LT} = \int_0^{10P} a_T \, dt = a_T \cdot 10P \]

\[P = 2\pi \sqrt{\frac{a_{3.0}}{\mu}} = 2\pi \sqrt{\frac{r_{3.0}^3}{\mu}} = 5928.5 \text{ sec} \]

\[\rightarrow \Delta V_{LT} = 8 \times 10^{-5} \text{ km/s} \times 10 \times 5928.5 \text{ sec} \]

\[\Delta V_{LT} = 4.7428 \text{ km/s} \]

This is larger than the \(\Delta V_{\text{TOT}} \) for a Hohmann xfer for 2 reasons: 1) gravity loss - the low-thrust method acts over a long time, whereas the H-xfer uses 2 impulses (which have no gravity losses); 2) The final orbit for the low-thrust method is almost, but not quite, circular. In this problem, reason #1 is the primary factor.
c.) xfer time = \(\frac{1}{2} \) period of Hohmann ellipse

\[T_H = 2\pi \sqrt{\frac{a_H^3}{\mu}} = 33141.2 \text{ sec.} \]

\[\implies \text{xfer time} = \frac{1}{2} T_H = 16570.6 \text{ sec} \]

\[= 4.6 \text{ hrs.} \]