Homogeneous Equilibrium Model

Mass

\[\frac{\partial \rho_m}{\partial t} - \nabla \cdot \rho_m \vec{v}_m = 0 \]

Energy

\[\frac{\partial \rho_m e_m}{\partial t} + \nabla \cdot \rho_m e_m \vec{v}_m + P \nabla \cdot \vec{v}_m = q \]

Momentum

\[\frac{\partial \vec{v}_m}{\partial t} + \vec{v}_m \cdot \nabla \vec{v}_m = - \frac{1}{\rho_m} \nabla P - K \vec{v}_m | \vec{v}_m | - g \sin \theta \]

or

\[\frac{\partial \rho_m \vec{v}_m}{\partial t} + \nabla \cdot \rho_m \vec{v}_m \vec{v}_m = - \nabla \rho_m K \vec{v}_m | \vec{v}_m | - g \rho_m \sin \theta \]

where

\[V_m = V_t = V_g \]

\[\rho_m = \alpha \rho_g + (1 - \alpha) \rho_t \]

\[\rho_m e_m = \alpha \rho_g e_g + (1 - \alpha) \rho_t e_t \]

and for \(0 < \alpha < 1 \)

\[T_t = T_g = T_{sat} \]
Non-Equilibrium Drift Flux Model

Mixture Mass Equation

\[\frac{\partial}{\partial t} \rho_m + \frac{\partial}{\partial x} (\rho_m V_m) = 0 \]

(1)

Vapor Mass Equation

\[\frac{\partial}{\partial t} (\alpha \rho_g) + \frac{\partial}{\partial x} (\alpha \rho_g V_m) + \frac{\partial}{\partial x} \left[\frac{\alpha \rho_g (1 - \alpha) \rho_v V_r}{\rho_m} \right] = -\Gamma \]

(2)

Mixture Equation of Motion

\[\frac{\partial}{\partial t} V_m + V_m \frac{\partial}{\partial x} V_m + \frac{1}{\rho_m} \frac{\partial}{\partial x} \left[\frac{\alpha \rho_g (1 - \alpha) \rho_v V_r^2}{\rho_m} \right] = -\frac{1}{\rho_m} \frac{\partial p}{\partial x} - KV_m | V_m | + g \]

(3)

Vapor Thermal Energy Equation

\[\frac{\partial}{\partial t} (\alpha \rho_g e_g) + \frac{\partial}{\partial x} (\alpha \rho_g V_m e_g) + \frac{\partial}{\partial x} \left[\frac{\alpha \rho_g (1 - \alpha) \rho_v V_r e_g}{\rho_m} \right] + p \frac{\partial}{\partial x} (\alpha V_m) \]

\[+ p \frac{\partial}{\partial x} \left[\frac{\alpha (1 - \alpha) \rho_v}{\rho_m} V_r \right] = q_{wg} + q_g - p \frac{\partial \alpha}{\partial t} + \Gamma h_{sg} \]

(4)

Mixture Thermal Energy Equation

\[\frac{\partial}{\partial t} (\rho_m e_m) + \frac{\partial}{\partial x} (\rho_m e_m V_m) + \frac{\partial}{\partial x} \left[\frac{(1 - \alpha) \rho_v \alpha \rho_g (e_g - e_i)}{\rho_m} V_r \right] + p \frac{\partial V_m}{\partial x} \]

\[+ p \frac{\partial}{\partial x} \left[\frac{\alpha(1 - \alpha) (\rho_v - \rho_g)}{\rho_m} V_r \right] = q_{wg} - q_{wv} \]

(5)

where

\[\rho_m = \alpha \rho_g + (1 - \alpha) \rho_v \]

(6)
\[V_m = \frac{\alpha \rho_g V_g + (1 - \alpha) \rho_t V_t}{\rho_m}, \]
(7)

and

\[V_r = V_g - V_t, \]
(8)

\[\Gamma = \frac{-q_{ig} - q_{it}}{h_{sg} - h_{st}}, \]
(9)

where

\[q_{ig} = h_{ig} A_i \frac{(T_s - T_g)}{vol}, \]
(10)

and

\[q_{it} = h_{it} A_i \frac{(T_s - T_t)}{vol}, \]
(11)

\[q_{wg} = h_{wg} A_{wg} \frac{(T_w - T_g)}{vol}, \]
(12)

and

\[q_{wt} = h_{wt} A_{wt} \frac{(T_w - T_t)}{vol}. \]
(13)
Two-Phase Two-Fluid Model
as implemented in TRAC-PF1

Liquid Mass Equation

\[
\frac{\partial}{\partial t} [(1 - \alpha) \rho_L] + \nabla \cdot [(1 - \alpha) \rho_L \vec{v}_L] = - \Gamma
\] \hfill (22)

Combined-Gas Mass Equation

\[
\frac{\partial}{\partial t} (\alpha \rho_g) + \nabla \cdot (\alpha \rho_g \vec{v}_g) = \Gamma
\] \hfill (23)

Total Energy Equation

\[
\frac{\partial}{\partial t} [(1 - \alpha) \rho_t \delta_t + \alpha \rho_g \delta_g] + \nabla \cdot [(1 - \alpha) \rho_t \delta_t \vec{v}_t + \alpha \rho_g \delta_g \vec{v}_g] = - p \nabla \cdot [(1 - \alpha) \vec{v}_t + \alpha \vec{v}_g]
\]
\[+ q_{wt} + q_{wg}
\] \hfill (24)

Combined-Gas Energy Equation

\[
\frac{\partial}{\partial t} (\alpha \rho_g \delta_g) + \nabla \cdot (\alpha \rho_g \delta_g \vec{v}_g) = - p \frac{\partial \alpha}{\partial t} - p \nabla \cdot (\alpha \vec{v}_g)
\]
\[+ q_{wg} = + q_{ig} + \Gamma \vec{h}_i
\] \hfill (25)
Liquid Equation of Motion

\[\frac{\partial \vec{v}_i}{\partial t} + \vec{v}_i \cdot \nabla \vec{v}_i = -\frac{1}{\rho_i} \nabla p + \frac{c_i}{(1 - \alpha) \rho_i} (\vec{v}_s - \vec{v}_i) |\vec{v}_s - \vec{v}_i| \\
\] \[- \frac{\Gamma^*}{(1 - \alpha) \rho_i} (\vec{v}_s - \vec{v}_i) - \frac{c_{wg}}{(1 - \alpha) \rho_i} \vec{v}_i |\vec{v}_i| - g \]

Combined-Gas Equation of Motion

\[\frac{\partial \vec{v}_g}{\partial t} + \vec{v}_g \cdot \nabla \vec{v}_g = -\frac{1}{\rho_g} \nabla p - \frac{c_i}{\alpha \rho_g} (\vec{v}_s - \vec{v}_g) |\vec{v}_s - \vec{v}_g| \\
\] \[- \frac{\Gamma^*}{\alpha \rho_g} (\vec{v}_g - \vec{v}_s) - \frac{c_{wg}}{\alpha \rho_g} \vec{v}_s |\vec{v}_s| + g \]

where

\[\Gamma = \frac{- (q_{ig} - q_{ig})}{\bar{h}'_v - \bar{h}'_t} \] \hspace{2cm} (28)

\[q_{ig} = h_{ig} A_i \frac{(T_{sv} - T_g)}{vol} \] \hspace{2cm} (29)

\[q_{it} = h_{it} A_i \frac{(T_{sv} - T_t)}{vol} \] \hspace{2cm} (30)

\[q_{wg} = h_{wg} A_w \frac{(T_w - T_g)}{vol} \] \hspace{2cm} (31)
\[q_{w_1} = h_{w_1} A_w \frac{(T_w - T_v)}{\text{vol}} \] \hspace{1cm} (32)

Total Mass Equation

\[
\frac{\partial}{\partial t} \left[(1 - \alpha) \rho_t + \alpha \rho_g \right] + \nabla \cdot \left[(1 - \alpha) \rho_t \vec{v}_t + \alpha \rho_g \vec{v}_g \right] = 0
\] \hspace{1cm} (33)

Air Mass Equation

\[
\frac{\partial (\alpha \rho_a)}{\partial t} + \nabla \cdot (\alpha \rho_a \vec{v}_a) = 0
\] \hspace{1cm} (34)

where

\[\rho_g = \rho_v + \rho_a \] \hspace{1cm} (35)

\[\rho_g e_g = \rho_v e_v + \rho_a e_a \] \hspace{1cm} (36)

\[p = \rho_v + \rho_a \] \hspace{1cm} (37)

Liquid-Solute Concentration Equation

\[
\frac{\partial [(1 - \alpha) m_p]}{\partial t} + \nabla \cdot [(1 - \alpha) m_p \vec{v}_l] = S_m,
\] \hspace{1cm} (38)
Two-Phase Two-Fluid Model

\[\frac{d \rho_m}{dt} + \mathbf{\nabla} \cdot (\alpha_g \rho_g \mathbf{V}_g + \alpha_v \rho_v \mathbf{V}_v) = 0. \] \hfill (2.1-1)

Vapor Mass Equation

\[\frac{d (\alpha_g \rho_g)}{dt} + \nabla \cdot (\alpha_g \rho_g \mathbf{V}_g) = \Gamma_g. \] \hfill (2.1-2)

Noncondensable (Air) Mass Equation

\[\frac{d (\alpha_{NC} \rho_{NC})}{dt} + \mathbf{\nabla} \cdot (\alpha_{NC} \rho_{NC} \mathbf{V}_{NC}) = \Gamma_{NC}. \] \hfill (2.1-3)

Boron Mass Equation

\[\frac{d (\alpha \rho_{NC})}{dt} + \mathbf{\nabla} \cdot (\alpha \rho_{NC} \mathbf{V}_{NC}) = \Gamma_B. \] \hfill (2.2-4)

Vapor Equation of Motion

\[\frac{d \mathbf{V}_g}{dt} + k_{vm} \left(\frac{\rho_c}{\alpha_g \rho_g} \right) \frac{\partial}{\partial t} \left[(\mathbf{\nabla} - \mathbf{V}_g) + \mathbf{V}_g \cdot \mathbf{\nabla} \mathbf{V}_g \right] \]

\[= - \frac{f_i}{\alpha_g \rho_g} - \frac{1}{\rho_g} \mathbf{\nabla} \mathbf{P} - \frac{C_{ng}}{\alpha_g \rho_g} \mathbf{V}_g |\mathbf{V}_g| + \mathbf{g} - k_{vm} \frac{\rho_c}{\alpha_g \rho_g} \mathbf{V}_D |\mathbf{V}_D| \cdot \mathbf{\nabla} (\mathbf{V}_g - \mathbf{V}_g). \] \hfill (2.1-5)

Liquid Equation of Motion

\[\frac{d \mathbf{V}_l}{dt} + k_{vm} \left(\frac{\rho_c}{\alpha_l \rho_l} \right) \frac{\partial}{\partial t} \left[(\mathbf{\nabla} - \mathbf{V}_l) + \mathbf{V}_l \cdot \mathbf{\nabla} \mathbf{V}_l \right] \]

\[= - \frac{f_i}{\alpha_l \rho_l} - \frac{1}{\rho_l} \mathbf{\nabla} \mathbf{P} - \frac{C_{wl}}{\alpha_l \rho_l} \mathbf{V}_l |\mathbf{V}_l| + \mathbf{g} - k_{vm} \frac{\rho_c}{\alpha_l \rho_l} \mathbf{V}_D |\mathbf{V}_D| \cdot \mathbf{\nabla} (\mathbf{V}_l - \mathbf{V}_l). \] \hfill (2.2-6)
Mixture Energy Equation
\[
\frac{\partial (\alpha_i \rho_i e_i + \alpha_g \rho_g e_g)}{\partial t} + \nabla \cdot (\alpha_i \rho_i \vec{V}_i - \alpha_g \rho_g \vec{V}_g) = -P \nabla \cdot (\alpha_i \vec{V}_i - \alpha_g \vec{V}_g) + Q_{wg} + Q_{w} + Q_{d g} + Q_{d}.
\] (2.1-7)

Vapor Energy Equation
\[
\frac{\partial (\alpha_g \rho_g e_g)}{\partial t} + \nabla \cdot (\alpha_g \rho_g \vec{V}_g) = -P \frac{\partial \alpha}{\partial t} - P \nabla \cdot \alpha \vec{V}_g + Q_{wg} + Q_{i g} - \Gamma_g h_{sg} + Q_{dg}.
\] (2.1-8)

In the above equations, \(k_{vm} \) is the virtual mass coefficient, and the subscripts \(C \) and \(D \) refer to the continuous and dispersed phases, respectively, and \(P \) refers to the continuous and dispersed phases, respectively.

\(\Gamma_g \) refers to the interfacial mass continuity
\[
\Gamma_g = \frac{Q_{ig} - Q_{d}}{h_{ig} - h_{i}}.
\] (2.1-9)

Interfacial Energy Continuity
\[
\Gamma_g = \frac{Q_{ig}}{h_{ig}}. \quad \text{(2.1-10)}
\]

where
\[
Q_{ig} = h_{ig} \frac{A_i}{Vol} (T_s - T_g)
\] (2.1-11)

and
\[
Q_{d} = h_{d} \frac{A_i}{Vol} (T_s - T_d).
\] (2.1-12)