STANDARD NOMENCLATURE

Independent Variables

r Radial coordinate in cylindrical geometry
1 Time
θ Azimuthal coordinate in cylindrical geometry
x Coordinate for one-dimensional geometry
z Axial coordinate in cylindrical geometry

Other Variables

A Area
c Shear or friction coefficient in two-fluid equations
c_p Specific heat at constant pressure
c_v Specific heat at constant volume
D Diameter
e Specific internal energy
FA Flow area
g Acceleration caused by gravity
G Mass flux \((\rho_m V_m)\)
h Specific enthalpy or heat-transfer coefficient
h_lg Latent heat of vaporization
H Pump head \((\Delta P/\rho)\)
k Thermal conductivity, form-loss coefficient, pipe roughness, or reactor multiplication constant
m Mass
Nu Nusselt number
p Pressure or power
q Heat-generation rate
q'' Heat flux
q''' Volumetric heat-generation rate
Q Pump volumetric flow
R Radius or neutronic reactivity
Re Reynolds number
T Temperature

Other Variables

V Velocity
vol Hydrodynamic cell volume
We Weber number
X Quality
α Vapor volume fraction or absorptivity
Γ Net volumetric vapor-production rate caused by phase change
δ Mean fuel-surface roughness
Δ Increment
ε Emissivity
μ Viscosity
ρ Microscopic density
σ Surface tension or Stefan-Boltzmann constant
\(\tau \) Shear stress
\(\phi \) Two-phase friction-factor multiplier
\(\omega \) Angular velocity
\(\Omega \) Pump-impeller angular velocity

Subscripts

- \(\text{a} \) Noncondensable-gas component
- \(\text{b} \) Bubble
- \(\text{c} \) Cladding
- \(\text{d} \) Droplet
- \(\text{f} \) Fuel or friction
- \(\text{g} \) Gas field or vapor
- \(\text{h} \) Hydraulic
- \(\text{i} \) Interface (liquid-vapor) quantity or one-dimensional cell in heat-transfer equations
- \(\text{j} \) One-dimensional cell index in hydrodynamics equations
- \(\text{l} \) Liquid field
- \(\ell \) Liquid field
- \(\ell_{\text{g}} \) Liquid to vapor
- \(\text{m} \) Mixture quantities
- \(\text{s} \) saturation conditions
- \(\text{sat} \) saturation conditions
- \(\text{v} \) vapor
- \(\text{w} \) wall property