Homework #12: Due Dec. 5, 2008

1. Assume that \(f(x) \) is differentiable on \(\mathbb{R} \). Show that if \(f(x) \) is even, then \(f'(x) \) is odd.

 Hint: Use the Chain Rule.

2. Assume that \(f(x) \) is differentiable and periodic on \(\mathbb{R} \). Show that \(f'(x) \) is periodic.

3. Suppose that \(f'(x) \) is bounded on \((a, b)\). Show that \(f(x) \) is also bounded on \((a, b)\).

 Hint: Note that the Extreme Value Theorem does not apply to \(f(x) \) on \((a, b)\). Use the Mean Value Theorem.

4. Suppose that \(f(x) \) is continuous on \([a, b]\) and \(f'(x) \) is continuous and positive on \((a, b)\). Show that \(f(x) \) is strictly increasing on \([a, b]\).

 Hint: We already know that \(f(x) \) is strictly increasing on \((a, b)\). It remains to show that \(f(a) < f(z) < f(b) \) for all \(z \in (a, b) \).

5. Show that \(\lim_{x \to \infty} \frac{x^t}{e^x} = 0 \) for all \(t \in \mathbb{R} \).

 Hint: Use L'Hospital's rule, when appropriate.