“Never confuse motion with action.”
- Benjamin Franklin

David J. Starling
Penn State Hazleton
PHYS 211
Generalize to 3D

Position, displacement, velocity and acceleration can be generalized to 3D using vectors.

\[x(t) \rightarrow \vec{r}(t) = x(t)\hat{i} + y(t)\hat{j} + z(t)\hat{k} \]
Position, displacement, velocity and acceleration can be generalized to 3D using vectors.

\[x(t) \rightarrow \vec{r}(t) = x(t)\hat{i} + y(t)\hat{j} + z(t)\hat{k} \]
\[\Delta x \rightarrow \Delta \vec{r} = \vec{r}_2(t) - \vec{r}_1(t) \]
Position, displacement, velocity and acceleration can be generalized to 3D using vectors.

\[x(t) \rightarrow \vec{r}'(t) = x(t)\hat{i} + y(t)\hat{j} + z(t)\hat{k} \]
\[\Delta x \rightarrow \Delta \vec{r} = \vec{r}_2(t) - \vec{r}_1(t) \]
\[v_{avg}(t) \rightarrow \vec{v}_{avg}(t) = \frac{\Delta \vec{r}}{\Delta t} \]
Position, displacement, velocity and acceleration can be generalized to 3D using vectors.

\[
x(t) \rightarrow \vec{r}(t) = x(t)\hat{i} + y(t)\hat{j} + z(t)\hat{k}
\]
\[
\Delta x \rightarrow \Delta \vec{r} = \vec{r}_2(t) - \vec{r}_1(t)
\]
\[
v_{\text{avg}}(t) \rightarrow \vec{v}_{\text{avg}}(t) = \frac{\Delta \vec{r}}{\Delta t}
\]
\[
v(t) \rightarrow \vec{v}(t) = \frac{d\vec{r}}{dt} = v_x(t)\hat{i} + v_y(t)\hat{j} + v_z(t)\hat{k}
\]
Position, displacement, velocity and acceleration can be generalized to 3D using vectors.

\[x(t) \rightarrow \vec{r}'(t) = x(t)\hat{i} + y(t)\hat{j} + z(t)\hat{k} \]

\[\Delta x \rightarrow \Delta\vec{r} = \vec{r}_2(t) - \vec{r}_1(t) \]

\[v_{avg}(t) \rightarrow \vec{v}_{avg}(t) = \frac{\Delta\vec{r}}{\Delta t} \]

\[v(t) \rightarrow \vec{v}(t) = \frac{d\vec{r}}{dt} = v_x(t)\hat{i} + v_y(t)\hat{j} + v_z(t)\hat{k} \]

\[a_{avg}(t) \rightarrow \vec{a}_{avg}(t) = \frac{\Delta\vec{v}}{\Delta t} \]
Generalize to 3D

Position, displacement, velocity and acceleration can be generalized to 3D using vectors.

\[x(t) \rightarrow \vec{r}'(t) = x(t)\hat{i} + y(t)\hat{j} + z(t)\hat{k} \]
\[\Delta x \rightarrow \Delta \vec{r} = \vec{r}_2(t) - \vec{r}_1(t) \]

\[v_{avg}(t) \rightarrow \vec{v}_{avg}(t) = \frac{\Delta \vec{r}}{\Delta t} \]

\[v(t) \rightarrow \vec{v}(t) = \frac{d\vec{r}}{dt} = v_x(t)\hat{i} + v_y(t)\hat{j} + v_z(t)\hat{k} \]

\[a_{avg}(t) \rightarrow \vec{a}_{avg}(t) = \frac{\Delta \vec{v}}{\Delta t} \]

\[a(t) \rightarrow \vec{a}(t) = \frac{d\vec{v}}{dt} = a_x(t)\hat{i} + a_y(t)\hat{j} + a_z(t)\hat{k} \]
We can also generalize two of our constant acceleration equations.

\[v(t) = v_0 + at \quad \rightarrow \quad \vec{v}(t) = \vec{v}_0 + \vec{a}t \]
\[x(t) = x_0 + v_0t + \frac{1}{2}at^2 \quad \rightarrow \quad \vec{r}(t) = \vec{r}_0 + \vec{v}_0t + \frac{1}{2}\vec{a}t^2 \]
We can also generalize two of our constant acceleration equations.

\(\vec{v}(t) = \vec{v}_0 + \vec{a}t \)

\(\vec{r}(t) = \vec{r}_0 + \vec{v}_0 t + \frac{1}{2} \vec{a}t^2 \)

\(\vec{v}_x = v_{0,x} + 2a_x \Delta x \)

\(\vec{v}_y = v_{0,y} + 2a_y \Delta y \)

\(\vec{v}_z = v_{0,z} + 2a_z \Delta z \)
Lecture Question 4.1

When an object is thrown (ignoring air drag), after it has left the thrower’s hand,

(a) v_x and v_y are constant.

(b) v_x and v_y change with time.

(c) v_x changes with time but v_y is constant.

(d) v_x is constant but v_y changes with time.
Projectile motion is a very common example of 2D motion where objects move under the influence of gravity.
Projectile motion is a very common example of 2D motion where objects move under the influence of gravity.

This ball is also rotating — we’ll get to that later (Ch 10).
In projectile motion, the acceleration in the horizontal direction is 0 m/s².
In projectile motion, the acceleration in the horizontal direction is 0 m/s2.

If we pick $+x$ as right, $a_x = 0$ m/s2.
In projectile motion, the acceleration in the vertical direction is \(g = 9.81 \text{ m/s}^2 \).
In projectile motion, the acceleration in the vertical direction is \(g = 9.81 \text{ m/s}^2 \).

If we pick \(+y\) as up, \(a_y = -9.8 \text{ m/s}^2 \).
Projectile Motion

In projectile motion, the horizontal and vertical motion are independent of each other.
In projectile motion, the horizontal and vertical motion are independent of each other.

We use our standard equations:

\[
\begin{align*}
x(t) &= x_0 + v_{0,x} t + \frac{1}{2} a_x t^2 \\
y(t) &= y_0 + v_{0,y} t + \frac{1}{2} a_y t^2
\end{align*}
\]
Lecture Question 4.2
A bullet is aimed at a target on the wall a distance L away from the firing position and the bullet strikes the wall a distance Δy below the mark. If the distance L was half as large, and the bullet had the same initial velocity, how would Δy change?

(a) $\Delta y \rightarrow 2\Delta y$
(b) $\Delta y \rightarrow 4\Delta y$
(c) $\Delta y \rightarrow \frac{\Delta y}{2}$
(d) $\Delta y \rightarrow \frac{\Delta y}{4}$
(e) Need more information.
An object is in **uniform circular motion** when its speed is constant and it travels in a circle.
Uniform Circular Motion

An object moving in a circle experiences acceleration (even if it’s moving at constant speed!).
An object moving in a circle experiences acceleration (even if it’s moving at constant speed!).

The acceleration vector always points toward the center.

The velocity vector is always tangent to the path.
Uniform Circular Motion

An object moving in a circle experiences acceleration (even if it’s moving at constant speed!).

The acceleration vector always points toward the center.

The velocity vector is always tangent to the path.

If the object moves faster, should the acceleration be larger or smaller?
For uniform circular motion, we can find the centripetal acceleration a_r using geometry and calculus.
For uniform circular motion, we can find the centripetal acceleration a_r using geometry and calculus.
Uniform Circular Motion

For uniform circular motion, we can find the centripetal acceleration a_r using geometry and calculus.

$$\vec{v} = v_x \hat{i} + v_y \hat{j}$$
For uniform circular motion, we can find the centripetal acceleration a_r using geometry and calculus.

\[
\vec{v} = v_x \hat{i} + v_y \hat{j} = [-v \sin(\theta)] \hat{i} + [v \cos(\theta)] \hat{j}
\]
For uniform circular motion, we can find the centripetal acceleration a_r using geometry and calculus.

\[
\vec{v} = \vec{v}_x \hat{i} + \vec{v}_y \hat{j} = [-v \sin(\theta)] \hat{i} + [v \cos(\theta)] \hat{j} = \left(-\frac{vy}{r}\right) \hat{i} + \left(\frac{vx}{r}\right) \hat{j}
\]
Uniform Circular Motion

For uniform circular motion, we can find the centripetal acceleration a_r using geometry and calculus.

\[
\vec{v} = v_x \hat{i} + v_y \hat{j} = [-v \sin(\theta)] \hat{i} + [v \cos(\theta)] \hat{j} = \left(-\frac{vy}{r} \right) \hat{i} + \left(\frac{vx}{r} \right) \hat{j}
\]

\[
\vec{a} = \frac{d\vec{v}}{dt}
\]
Uniform Circular Motion

\[\vec{v} = \frac{v}{r} (-yi + xj) \]
Uniform Circular Motion

\[\vec{v} = \frac{v}{r} (-y \hat{i} + x \hat{j}) \]

\[\vec{a} = \frac{d\vec{v}}{dt} = \frac{v}{r} (-v_y \hat{i} + v_x \hat{j}) \]
Uniform Circular Motion

\[\vec{v} = \frac{v}{r} (-yi + xj) \]

\[\vec{a} = \frac{d\vec{v}}{dt} = -\frac{v}{r} (v_y\hat{i} + v_x\hat{j}) \]

\[a = \sqrt{a_x^2 + a_y^2} \]
Uniform Circular Motion

\[\vec{v} = \frac{v}{r} (-y\hat{i} + x\hat{j}) \]

\[\vec{a} = \frac{d\vec{v}}{dt} = \frac{v}{r} (-v_y\hat{i} + v_x\hat{j}) \]

\[a = \sqrt{a_x^2 + a_y^2} = \frac{v}{r} \sqrt{v_y^2 + v_x^2} \]
Uniform Circular Motion

\[\vec{v} = \frac{v}{r} (-y\hat{i} + x\hat{j}) \]

\[\vec{a} = \frac{d\vec{v}}{dt} = \frac{v}{r} (-v_y\hat{i} + v_x\hat{j}) \]

\[a = \sqrt{a_x^2 + a_y^2} \]

\[= \frac{v}{r} \sqrt{v_y^2 + v_x^2} \]

\[a = \frac{v^2}{r} \text{ (uniform circular motion)} \]
Lecture Question 4.3

A steel ball is whirled on the end of a chain in a horizontal circle of radius R with a constant period T. If the radius of the circle is then reduced to $0.75R$, while the period remains T, what happens to the centripetal acceleration of the ball?

(a) Centripetal acceleration increases.
(b) Centripetal acceleration decrease.
(c) Centripetal acceleration stays the same.
(d) Not enough information.
Relative Motion

The velocity of an object depends on the reference frame from which it is measured.
The velocity of an object depends on the reference frame from which it is measured.

- frame A (Alice) is stationary
- frame B (Bob) moves with some constant velocity
- object P (Parakeet) is measured
Relative Motion

- x_{BA}: position of Bob relative to Alice
- x_{PB}: position of Parakeet relative to Bob
- x_{PA}: position of Parakeet relative to Alice
Relative Motion

- x_{BA}: position of Bob relative to Alice
- x_{PB}: position of Parakeet relative to Bob
- x_{PA}: position of Parakeet relative to Alice

\[x_{PA} = x_{PB} + x_{BA} \]
Relative Motion

- \(x_{BA} \): position of Bob relative to Alice
- \(x_{PB} \): position of Parakeet relative to Bob
- \(x_{PA} \): position of Parakeet relative to Alice

\[
x_{PA} = x_{PB} + x_{BA}
\]

\[
v_{PA} = v_{PB} + v_{BA}
\]
Relative Motion

- \(x_{BA}\): position of Bob relative to Alice
- \(x_{PB}\): position of Parakeet relative to Bob
- \(x_{PA}\): position of Parakeet relative to Alice

\[
\begin{align*}
x_{PA} &= x_{PB} + x_{BA} \\
v_{PA} &= v_{PB} + v_{BA} \\
a_{PA} &= a_{PB} + a_{BA}
\end{align*}
\]
Relative Motion

- \(\vec{r}_{BA} \): position of Bob relative to Alice
- \(\vec{r}_{PB} \): position of Parakeet relative to Bob
- \(\vec{r}_{PA} \): position of Parakeet relative to Alice
Relative Motion

- \vec{r}_{BA}: position of Bob relative to Alice
- \vec{r}_{PB}: position of Parakeet relative to Bob
- \vec{r}_{PA}: position of Parakeet relative to Alice

$$\vec{r}_{PA} = \vec{r}_{PB} + \vec{r}_{BA}$$
Relative Motion

- \vec{r}_{BA}: position of Bob relative to Alice
- \vec{r}_{PB}: position of Parakeet relative to Bob
- \vec{r}_{PA}: position of Parakeet relative to Alice

\[
\vec{r}_{PA} = \vec{r}_{PB} + \vec{r}_{BA}
\]

\[
\vec{v}_{PA} = \vec{v}_{PB} + \vec{v}_{BA}
\]
Relative Motion

- \vec{r}_{BA}: position of Bob relative to Alice
- \vec{r}_{PB}: position of Parakeet relative to Bob
- \vec{r}_{PA}: position of Parakeet relative to Alice

\[
\vec{r}_{PA} = \vec{r}_{PB} + \vec{r}_{BA}
\]
\[
\vec{v}_{PA} = \vec{v}_{PB} + \vec{v}_{BA}
\]
\[
\vec{a}_{PA} = \vec{a}_{PB} + \vec{a}_{BA}
\]