1. **SET UP** the definite integral to find the area of the region bounded by \(y = x^2 - x \) and \(y = x + 3 \).

 \[\text{limits: } x^2 - x = x + 3 \]
 \[x^2 - 2x - 3 = 0 \]
 \[(x - 3)(x + 1) = 0 \]
 \[x = 3 - 1 \]

 \[A = \int_{-1}^{3} (x + 3) - (x^2 - x) \, dx \]

2. **SET UP** the definite integral to find the volume of the solid of revolution generated by rotating the region bounded by the graphs of the equations \(x = y^2 \) and \(x = 1 \) about the line \(x = 1 \).

 \[dV: \]
 \[R \mid y) = 1 - y^2 \]

 \[\text{limits: } \]
 \[1 = y^2 \]
 \[\pm 1 = y \]

 \[V = \pi \int_{-1}^{1} (1 - y^2)^2 \, dy \]

 \[\text{or} \]
 \[V = 2\pi \int_{0}^{1} (1 - y^2)^2 \, dy \]