1. **SET UP** the integral to find the area of the region bounded by the graphs of $x = 4 - y^2$ and $x = y + 2$.

 \[4 - y^2 = y + 2 \]
 \[y^2 + y - 2 = 0 \]
 \[(y+2)(y-1) = 0 \]
 \[y = -2, y = 1 \]

 \[A = \int_{-2}^{1} ((4-y^2) - (y+2)) \, dy \]

2. **SET UP** the integral to find the area of the region bounded by the graphs of $y = \sqrt{x}$, $x = 0$, and $y = 2$.

 \[\sqrt{x} = 2 \]
 \[x = 4 \]

 \[A = \int_{0}^{4} (2 - \sqrt{x}) \, dx \]
1. **SET UP** the integral to find the area of the region bounded by the graphs of \(x = 9 - y^2 \) and \(x = y + 3 \).

 \[
 \text{limits:} \quad 9 - y^2 = y + 3 \quad \Rightarrow \quad y^2 + y - 6 = 0 \\
 (y + 3)(y - 2) = 0 \\
 y = -3, 2
 \]

 \[A = \int_{-3}^{2} ((9 - y^2) - (y + 3)) \, dy \]

2. **SET UP** the integral to find the area of the region bounded by the graphs of \(y = \sqrt{x} \), \(x = 0 \), and \(y = 4 \).

 \[
 \text{limits:} \quad \sqrt{x} = 4 \quad \Rightarrow \quad x = 16 \\
 A = \int_{0}^{16} (4 - \sqrt{x}) \, dx \\
 \text{OR} \quad A = \int_{0}^{4} (\sqrt{x} - 0) \, dx \\
 \]