1. **SET UP** the integral to find the area of the region bounded by the graphs of \(x = y^2 - 4 \) and \(x = y - 2 \).

![Graph of \(x = y^2 - 4 \) and \(x = y - 2 \)]

2. **SET UP** the integral to find the volume of the solid generated by rotating the region bounded by the graphs of \(y = 2 - x^2 \) and \(y = x^2 \) about the x-axis using vertical rectangles.

![Graph of \(y = 2 - x^2 \) and \(y = x^2 \) with a vertical rectangle]
3. **SET UP** the integral to find the volume of the solid generated by rotating the region bounded by the graphs of

\[y = \sqrt{x} \], \[x = 0 \], and \[y = 1 \] about the x-axis.

Indicate your method of choice by circling one of the following:

- **disk**
- **washer**
- **shell**

4. **SET UP** the integral to find the volume of the solid with square cross-sections taken perpendicular to the x-axis whose base is bounded by the graphs of \[y = x - 2 \], \[y = 1 \] and \[x = 0 \].
5. **SET UP** the integral to find the area of the surface formed by rotating the graph of the curve \(f(x) = x^2 \) over \([0, 2]\) about the \(x\)-axis.

6. Find the indefinite integral:

\[
\int x^2 \ln x \, dx
\]
7. Find the indefinite integral: \[\int \sin^7 x \cdot \cos^3 x \, dx \]

8. **FIND** the volume of the solid formed by revolving the region in the first quadrant bounded by the graphs of \(y = \cos x, \quad x \geq 0, \quad y = 0, \quad \text{and} \quad x = \frac{\pi}{2} \) about the y-axis.

Use the method of your choice. Indicate your choice by **circling** one of the following:

- **DISK**
- **WASHER**
- **SHELL**