1. (a) Use a graph and/or table to approximate the limit, if it exists. If it does not exist, provide a reason(s).

\[
\lim_{x \to 1} \frac{\ln x^2}{x - 1} \approx \n
\]

<table>
<thead>
<tr>
<th>x</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
<th>1.1</th>
<th>1.2</th>
<th>1.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(x)</td>
<td>2.378</td>
<td>2.234</td>
<td>2.107</td>
<td></td>
<td>1.906</td>
<td>1.823</td>
<td>1.749</td>
</tr>
</tbody>
</table>

If the limit does not exist, reason(s) __

1. (b) Use a graph and/or table to approximate the limit, if it exists. If it does not exist, provide a reason(s).

\[
\lim_{x \to 0} \frac{\cos x}{x^2} \approx \n
\]

<table>
<thead>
<tr>
<th>x</th>
<th>-0.3</th>
<th>-0.2</th>
<th>-0.1</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
</tr>
</thead>
</table>

If the limit does not exist, reason(s) __
2. Find each, if it exists. **If it does not exist, provide a reason.**

\[f(x) = \begin{cases}
 x + 2, & x \leq 0 \\
 x^2 - 4, & x > 0
\end{cases} \]

a. \(\lim_{x \to 0^-} f(x) = \)

b. \(\lim_{x \to 0^+} f(x) = \)

c. \(\lim_{x \to 0} f(x) = \)

d. \(f(0) = \)

3. Analytically, find the limit if it exists, \(\lim_{x \to 0} \frac{x+2 - \frac{1}{2}}{x} \)
4. and 5. Determine the continuity and/or discontinuity of the function \(f(x) = \frac{x^2 + x - 2}{x^2 - 4} = \frac{(x + 2)(x - 1)}{(x + 2)(x - 2)} \) by completing the table.

<table>
<thead>
<tr>
<th>Value(s) (x = c) at which (f) is discontinuous</th>
<th>(\lim_{x \to c^-} f(x))</th>
<th>(\lim_{x \to c^+} f(x))</th>
<th>(\lim_{x \to c} f(x))</th>
<th>Type of discontinuity at (x = c)</th>
<th>Graphical characteristic at (x = c)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Find the value(s) of \(x \) in terms of an integer \(n \) such that the function is discontinuous that is determine the value(s) of \(x \) such that the graph has vertical asymptotes.

a. \(f(x) = \csc(3x) \)

b. \(f(x) = \sec(2x) \)
7. **Use the limit definition of the derivative** to show that for \(f(x) = x^2 - 5x + 3 \), the derivative is \(f'(x) = 2x - 5 \). No credit for basic rules, because the not the point! 😊

8. Find the derivative and simplify with positive exponents. \(f(x) = 4x^3 - 5x + \sqrt{x} - \frac{1}{x^2} + 7 \)
9. Find the derivative and the slope of the tangent line to \(f(x) = 2\sin x - 5e^x \) at the point \((0, -5)\).

10. Sketch the graphs of two distinct functions that are continuous at \(x = 1 \), but are not differentiable at \(x = 1 \). You do not need to provide the equations, just sketches of possible graphs.