Multi-Block Structured Meshing and Pre-Processing for OpenFOAM Turbomachinery Analysis

Dr. Chris Sideroff, Pointwise
TOC

• Axial turbine meshing demo
• Advanced feature meshing demo
• Mesh topology
• Mesh quality
• Cyclic setup
• Transforms
• Flow Initialization
• Miscellaneous
Meshing Demo

- Aachen axial rotor
- High-stagger angle
- 1-1 periodic
- No fillets
- No tip gap
More Advanced Applications

• GAMM Francis Runner
 – Highly-3D blade
 – High solidity
 – Turning topology

• DARPA Hi-Re Pump
 – Tip gap w/ round
 – Swept blade
 – Spanwise twisting
 – Fillets
Fillet Topologies

BLADE

fillet

O

H

H

OK

Better

POINTWISE®
Reliable CFD Meshing
Meshing Demo

• DARPA HIREP: Fillet
Why are structured meshes so desirable?
Mesh Topology

For a given # points, hex cells are more efficient

- 5381 points
 - 5200 cells

- 6136 points
 - 11,910 cells
Mesh Topology

Body fitted structured mesh is more accurate
Mesh Topology

Less truncation error when faces aligned with flow gradients

\[u_{\text{face}} = u_{\text{cell}} + \frac{\partial u}{\partial y} \Delta y + O(\Delta y^2) \]
Mesh Topology

More consistent character across mesh resolutions and machine families.
Mesh Topology
Are structured meshes really that great?

• For turbomachinery flows, they can’t be beat
 – Axial compressor polytropic efficiencies \(\geq 95\% \)
• For high-accuracy, they can’t be beat
 – Aircraft drag predictions < 1 count
• Long-time turbo customer: “We’ve been trying unstructured methods for 10 years and have given up.”
Mesh Topology

When can I get away without using structured meshes?

- My boss told me I can only spend 1 day meshing
- When the flow path is unknown or changes rapidly, structured meshes lose their benefit
- Unstructured meshes provide more flexible resolution control, i.e. localized clustering
- Hybrid meshes are a good compromise between effort and accuracy
 - Prism/hex in important regions (BL’s, wakes, shocks, free-surface)
 - Unstructured elsewhere
What is a good mesh?
Mesh Quality

How do we determine if we have a good mesh?

- “A standard rule of thumb is that the element shape should be ‘pleasing to the eye’ ...” *Desktop Engineering, March 2011*
- No single standard, benchmark or metric exists that can succinctly assess the “quality” of a mesh
- Rely on suggested best practices and our own experiences
- Grid dependency studies are good but not trivial
checkMesh

aspect ratio

- AR = longest side / shortest side
- Large AR OK if gradients in long direction are small
checkMesh

skewness

- Skewness = deviation of CC vector from FC
- Mid-point rule 2nd order accurate if interpolated face values are at face center
checkMesh

orthogonality

- Ortho = angular deviation of CC vector from face vector
- Affects interpolation of gradient to FC
Quality Metrics
Are aspect ratio, skewness and ortho sufficient?

AR = 1, Skew = 0, Ortho = 0
AR = 1, Skew = 0, Ortho = 0
My mesh is good, what next?
Cyclic (aka Periodic) BCs

- **cyclic**
 - 1-to-1 point matching
 - Consistent face ordering
 - Constant transformation matrix

- **cyclicGgi**
 - Non-point matching
 - Face ordering unnecessary
 - Non-constant transformation matrix

Constant xfrm

Non-constant xfrm
cyclicGgi
polyMesh/boundary

perPres
{
 type cyclicGgi;
nFaces 4200;
startFace 1266360;
shadowPatch perSuc;
zone perPresZone;
rotationAngle 8.7805;
rotationAxis (1 0 0);
separationOffset (0 0 0);
bridgeOverlap false;
}

perSuc
{
 type cyclicGgi;
nFaces 4200;
startFace 1270560;
shadowPatch perPres;
zone preSucZone;
rotationAngle 8.7805;
rotationAxis (1 0 0);
separationOffset (0 0 0);
bridgeOverlap false;
}

Need to create these
Sets

Groups of points, faces or cells

- General form:

 cellSet|faceSet|pointSet <setName> <action> <source>

where <action> is one of

- list : prints the contents of the set
- clear : clears the set
- invert : inverts the set
- remove : remove the set
- new <source> : sets to set to the source set
- add <source> : adds all elements from the source set
- delete <source> : deletes
- subset <source> : combines current set with the source set
Sets cont.

Many types of sources

- Points
 - boxToPoint
 - cellToPoint
 - faceToPoint
 - labelToPoint
 - nearestToPoint
 - pointToPoint
 - setToPoint
 - surfaceToPoint
 - zoneToPoint

- Faces
 - boundaryToFace
 - boxToFace
 - cellToFace
 - faceToFace
 - labelToFace
 - normalToFace
 - patchToFace
 - pointToFace
 - setToFace

- Cells
 - boxToCell
 - cellToCell
 - cylinderToCell
 - faceToCell
 - faceZoneToCell
 - fieldToCell
 - labelToCell
 - nbrToCell
 - nearestToCell
 - pointToCell
 - regionToCell
 - rotatedBoxToCell
 - setToCell
 - shapeToCell
 - sphereToCell
Sets and Zones

Can be used 3 ways

1. Interactively: `setSets`
2. In batch: `setSets -batch <my_batch_file>`
3. Using `pointSet/faceSet/cellSet` from CLI with appropriate `pointSetDict/faceSetDict/cellSetDict` in system/

- Refer to:
  ```
  $FOAM_APP/utilities/mesh/manipulation/{point,face,cell}Set/
  {point,face,cell}SetDict
  ```

- Last step, convert sets to zones:
  ```
  setsToZones -noFlipMap
  ```
Mesh Transformations

- `transformPoints` <-<type> -<options>

 Types:
 - scale “(xScaleFactor yScaleFactor zScaleFactor)”
 - translate “(dX dY dZ)”
 - rotate “((x0 y0 z0) (x1 y1 z1))”
 - Plus a couple more

- E.g. change from inches to meters
 `transformPoints` -scale “(0.0254 0.0254 0.0254)”

- E.g. change from X rotation axis to Z
 `transformPoints` -rotate “((0 0 1) (0 1 0))”
 `transformPoints` -rotate “((1 0 0) (0 0 1))”
Measured Data as BC
1D data from .csv file as boundary condition

rotor_inlet
{
 type profile1DfixedValue;
 fileName inletData.csv;
 fileFormat "turboCSV";
 interpolateCoord "R";
 fieldName "Velocity";
}

• fieldNames:
 – Velocity
 – K
 – Epsilon
 – Pressure
• Z-axis only
• Interpolation only

Sample file:

[Data]
R, Velocity Axial, Velocity Radial, Velocity Circumferential
0.265,0,0,0,297853.515
0.294639972,10.77936539,-0.34820352,10.35051285,294904.4082
...

http://openfoamwiki.net/index.php/Sig_Turbomachinery_Library_OpenFoamTurbo
Initialization Tools

<table>
<thead>
<tr>
<th>simpleSRFFoam</th>
<th>MRFSimpleFoam, etc</th>
</tr>
</thead>
<tbody>
<tr>
<td>addRotation</td>
<td>addSwirlAndRotation</td>
</tr>
<tr>
<td>- Add rotational velocity to 0/Urel</td>
<td>- Add rotational velocity to 0/U</td>
</tr>
<tr>
<td>- Specify values in constant/swirlAndRotationProperties</td>
<td>- Specify values in constant/swirlAndRotationProperties</td>
</tr>
<tr>
<td>potentialTurbFoam</td>
<td>potentialFoam</td>
</tr>
<tr>
<td>- Potential flow solver for U_{rel}</td>
<td>- Potential flow solver for U</td>
</tr>
</tbody>
</table>

* from Brent Craven, PSU ARL
Miscellaneous

Rotating solver settings and parallel processing

• constant/SRFProperties
 – Single rotating reference frame
• constant/MRFZones
 – Multiple reference frames (stationary + moving)
• constant/dynamicMeshDict
 – Physically moving (i.e. rotating mesh)
 – Cell zone *must* be called movingCells
• system/decomposeParDict
 globalFaceZones(perPresZone perSucZone);
 – Keeps a copy of cells adjacent to faces zones on each CPU
 – Use for cyclicGgi zones
Happy TurboFOAM’ing!

Contact me with Q’s
cnsidero@pointwise.com