OpenFOAM Tutorials:
Programming Session

Henrik Rusche

h.rusche@wikki-gmbh.de

Wikki, United Kingdom and Germany

OpenFOAM-Workshop Training Sessions
6th OpenFOAM Workshop
13.6.2011, Penn State University, USA
Working With OpenFOAM

1. Walk through a simple solver: scalarTransportFoam
2. Scalar transport: swirl test
 - Non-uniform initial field
 - Field algebra and forced assignment
3. On-the-fly post-processing
4. Manipulating boundary values
5. Reading control data from a dictionary
6. Implementing a new boundary condition
Walk Through a Simple Solver

Solver Walk-Through scalarTransportFoam

- Types of files
 - Header files
 - Located before the entry line of the executable
 - Contain various class definitions
 - Grouped together for easier use
 - Include files
 - Often repeated code snippets, e.g. mesh creation, Courant number calculation and similar
 - Held centrally for easier maintenance
 - Enforce consistent naming between executables, e.g. mesh, runTime
 - Local implementation files
 - Main code, named consistently with executable
 - createFields.H
Scalar Transport: Swirl Test

Swirl Test on `scalarTransportFoam`

- Setting up initial velocity field
- Forcing assignment on boundary conditions
- Types of boundary conditions
Scalar Transport: Swirl Test

Initial Condition Utility

```c++
volVectorField U
(
    IOobject
    (
        "U",
        runTime.timeName(),
        mesh,
        IOobject::MUST_READ,
        IOobject::NO_WRITE
    ),
    mesh
);

// Do cells
const volVectorField& centres = mesh.C();

point origin(1, 1, 0.05);
vector axis(0, 0, -1);

U = axis ^ (centres.internalField() - origin);
U.write();
```
Troubleshooting this tutorial

- swirlTest.git is a Git repository which contains snapshots of the input data and source code in its branches
- The slides have references to those branches
- Something like: In trouble? This is in branch initU
- With this information you can use
 - `git checkout -f initU`
 to go to initU (throwing away your changes)
- or use
 - `git checkout -f initU file1 file2 dir`
 to select individual files or directories
- or use
 - `cd $HOME/swirlTest.git`
 `rm -rf *`
 `git checkout -f initU`
 to start at a given point. Note that you still have to compile and blockMesh!
Unpacking the case (Git repository)

- Unpack Git repo
  ```
  cd $HOME
  tar xf /cdrom/OFW5/Advanced_Training/swirlTest.git.tgz
  cd $HOME/swirlTest.git
  ```
- Make the mesh
  ```
  blockMesh
  ```
- Inspect the mesh
- Look at the U field
- You want to go back here? This is in branch **start**
Compile the setSwirl utility and use it

- Compile setSwirl

 cd $HOME/swirlTest.git/src/setSwirl
 wmake
 rehash

- Does it compile?

- Make the mesh and initialise the velocity field

 cd $HOME/swirlTest.git
 setSwirl

- Does it run? Look at the U field! How did it change?

- In trouble? This is in branch initU

- Run scalarTransportFoam

 scalarTransportFoam

- Does it run? Look at the result!
Compile postlib library

- Go there and compile
  ```bash
  cd $HOME/swirlTest.git/src/postLib
  wmake libso
  ```
- Does it compile?
- Activate the minMaxField function object by uncommenting it
  ```
  cd $HOME/swirlTest.git
  kate system/controlDict
  scalarTransportFoam
  ```
- Does it run? How did the output change?
- In trouble? This is in branch `minMax`
Copy and rename scalarTransportFoam

- Copy scalarTransportFoam application from the OF-distro

 cd $HOME/swirlTest.git/src
 cp -r $FOAM_APP/solvers/basic/scalarTransportFoam .

- Rename it

 mv scalarTransportFoam myScalarTransportFoam
 cd myScalarTransportFoam
 wclean
 mv scalarTransportFoam.C myScalarTransportFoam.C
 kate Make/files
 wmake
 rehash

- Make/files:

 myScalarTransportFoam.C

 EXE = $(FOAM_USER_APPBIN)/myScalarTransportFoam

- Does it compile? Does it run? In trouble? This is in branch renamedApp
Add Hello World

- Add "Hello World"

  ```
  kate myScalarTransportFoam.C
  wmake
  ```

- Add this line to myScalarTransportFoam.C:

  ```
  for (runTime++; !runTime.end(); runTime++)
  {
    Info<< "Time = " << runTime.timeName() << nl << endl;
    Info<< "Hello World" << endl;
  }
  # include "readSIMPLEControls.H"

- Does it compile?
- Does it compile? Does it run?
- In trouble? This is in branch hello
Add uniform source term

- Modify the source code and re-xcompile

  kate myScalarTransportFoam.C
  wmake

- Modify myScalarTransportFoam.C such that:

  for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
  {
      dimensionedScalar source
      (  
        "source", dimensionSet(0, 0, -1, 1, 0), 1.0
      ); // Added

      solve
      (  
        fvm::ddt(T)
        + fvm::div(phi, T)
        - fvm::laplacian(DT, T)
        ==
        source // Added
      );
  }  

- Does it compile? In trouble? This is in branch uSource
Add a non-uniform source term (1)

- Add the field by copying the T field

  cd $HOME/swirlTest.git
cp 0/T 0/source
kate 0/source

- 0/source:

  dimensions [0 0 -1 1 0 0 0];

  internalField uniform 1.0;

  boundaryField
  {
    fixedWalls { type zeroGradient; }
  
    inlet{ type zeroGradient; }

    outlet { type zeroGradient; }

    defaultFaces { type empty; }
  }

- In trouble? This is in branch copyField
Add a non-uniform source term (2)

- Initialise with a modified setSwirl utility

  ```
 cd $HOME/swirlTest.git/src/setSwirl
 kate setSwirl.C
 wmake
 setSwirl
  ```

- Add this section in setSwirl.C:

  ```
 Info<< " Reading source" << endl;
 volScalarField source
 (
 IOobject
 ("source",
 runTime.timeName(),
 mesh,
 IOobject::MUST_READ,
 IOobject::NO_WRITE
),
 mesh
);
  ```

- more on the next slide
Add a non-uniform source term (3)

- Still in setSwirl.C:

```cpp
...
U.write();

source.internalField() =
 centres.internalField().component(vector::X);

source.boundaryField()[0] ==
 centres.boundaryField()[0].component(vector::X);
source.boundaryField()[1] ==
 centres.boundaryField()[1].component(vector::X);
source.boundaryField()[2] ==
 centres.boundaryField()[2].component(vector::X);

source.write();
...
```

- Does it compile? Does it run? How did the source field change?
- In trouble? This is in branch `sourceField`
Add a non-uniform source term (4)

- Modify the source code to use the source

```bash
cd $HOME/swirlTest.git/src/myScalarTransportFoam
kate myScalarTransportFoam.C
kate createFields.C
wmake
```

- `createFields.H`:

  ```
 Info<< "Reading field source\n" << endl;

 volScalarField source
 (
 IOobject
 (
 "source",
 runTime.timeName(),
 mesh,
 IOobject::MUST_READ,
 IOobject::AUTO_WRITE
),
 mesh
);
```

  - more on the next slide
Add a non-uniform source term (5)

- Comment out one line in myScalarTransportFoam.C:
  
  ```cpp
 for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
 {
 // Not needed!!!
 //dimensionedScalar source ("source", dimensionSet(0, 0, -1, 1, 0),

 solve
 {
 // Does it compile?
 // Does it run? Look at the result!
 // In trouble: This is in branch nuSource
  ```
Transport the source field (1)

- Add the transport equation

```bash
cd $HOME/swirlTest.git/src/myScalarTransportFoam
kate myScalarTransportFoam.C
wmake
```

- Add 6 lines in `myScalarTransportFoam.C`:

```c
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
 solve
 (
 fvm::ddt(source)
 + fvm::div(phi, source)
 - fvm::laplacian(DT, source)
);

 solve
 (
```

- Does it compile
- more on the next slide
Transport the source field (2)

- Change the boundary conditions and set it: Set inlet to fixedValue

  kate 0/source
  setSwirl

- 0/source:
  
inlet
  {
    type zeroGradient;
    type fixedValue;
    value uniform 0;
  }

- Does it run? Did the BC in 0/source change?
- Now we run the application

  cd $HOME/swirlTest.git
  myScalarTransportFoam

- Make the necessary changes in fvSchemes and fvSolution. Let the force guide you.
- In trouble? This is in branch coupled