1. **Motivation:**

In composite parts manufacture, **Curing Kinetics** determines:

- Max Temperature Experience
- Cycle Time
- Final Properties

2. **Modeling:**

Diffusion Reaction System is applied:

- **Heat Transfer:**
 \[
 \rho c \frac{\partial T}{\partial t} = k \nabla^2 T + \rho H_r \frac{\partial \alpha}{\partial t}
 \]

- **Cure Model:**
 \[
 \frac{\partial \alpha}{\partial t} = f(\alpha, T) = \left(a_1 e^{-d_1/RT} + a_2 e^{-d_2/RT} \alpha^n \right)(1-\alpha)^n
 \]
3. **OpenFoam Application:**

2-D Case, Modified LaplacianFOAM solver with an additional term for Cure Kinetics

4. **Validity and Verification:**

![Graphs showing cure degree profiles comparison based on three methods and temperature profiles comparison based on three methods.](image)