OpenFOAM® Validation of the GAMM Francis Runner using SimpleSRFFOAM

B. Lewis, A. Wouden, J. Cimbala, E. Paterson
The Pennsylvania State University

This research was made with Government support under and awarded by DoE and DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a.
DoE Project Scope and Objectives

Project Scope:
• Develop an understanding of unsteadiness and resonance effects caused by wicket gate-runner interactions that will allow for efficient hydroturbine operation at off-design conditions

Motivation:
• In order to use hydro plants to improve the effectiveness of new wind and solar generation, the hydro turbines must operate efficiently at lower loads

Project Objectives:
→ 1. Gain proficiency in creating computational grids for turbomachinery applications.
→ 2. Investigate methods for analyzing steady and unsteady flows in turbomachinery and predicting the onset of unsteadiness.
3. Determine the relationship between unsteadiness and resonance effects caused by rotor-stator interactions at off-design conditions.
4. Develop recommendations for turbine design and operation to suppress unsteadiness and improve runner efficiency at off-design conditions.
Three-dimensional cut through the GAMM Francis turbine [2]

GAMM Francis Turbine
(Validation Case)
Background

• Designed and tested at IMHEF-EPFL, Lausanne, Switzerland

• Studied in:

• Comparison computational results:
 ▪ 1998 Gros et al. [3]
 ▪ 2002 Muntean at al. [5]

• Model Parameters
 ▪ Runner Diameter: 0.4 m
 ▪ Specific Speed: 0.5
 ▪ 13 Runner Blades
 ▪ 24 Stay Vanes
 ▪ 24 Guide Vanes
Model Test Data

- Best Efficiency Point (BEP)
 - Efficiency: 92%
 - Flow Rate: 0.372 m³/s
 - Torque: 369.1 Nm
 - Head Loss: 5.98 m
 - Rotation: 52.364 rad/sec

- 4 Off-Design Conditions were measured, but not analyzed in this study

Hill chart for the GAMM Francis turbine: Volume flow coefficient (Ψ), Energy coefficient (φ), Efficiency (η), and Gate angle (α) [2]
Model Test Data (cont.)

- **Time Averaged flow data**
 - B-B’: Inlet plane
 - C-C’: Middle plane
 - D-D’: Outlet plane

- **Problems:**
 - A-A’ and spiral case geometry not available
 - C-C’ available only at BEP

- **Time averaging** of transient data corresponds to circumferential averaging of steady state data

Meridional cross-section through the GAMM Francis turbine [2]
Computational Approach

• **Final Goal**: perform a fully coupled simulation including spiral case, distributor, runner, diffusor, and draft tube
 - Steady-State Calculations
 - Multiple rotating reference frames (MRF)
 - MixingPlane interfaces (under development)
 - Transient Calculations
 - Moving/Dynamic mesh
 - Sliding mesh interfaces

• Segregated Approach: analyze portions of turbine separately and loosely couple the steady-state results
 - Rotating reference frame only used in runner section (SRF)
 - Circumferential average flow profiles are passed to next down stream section
Computational Approach

- **Segregated Approach**: analyze portions of turbine separately and loosely couple the steady-state results
 - Rotating reference frame (SRF) used in runner section
 - Circumferential average flow profiles are passed from distributor to runner
GAMM Distributor
Distributor Analysis

• Mesh
 ▪ Coarse mesh: 350,000 Cells
 ▪ Fine mesh: 1,500,000 Cells

• Boundary Conditions
 ▪ Inlet: Uniform radial and circumferential velocity
 • Recommended in 1995 ERCOFTAC Seminar [2]
 →libCylindricalInletVelocity (A. Wouden)
 • Accurate Inlet profile or spiral case geometry not available
 ▪ Outlet: Fixed value pressure

• Post-processing
 ▪ Velocity profiles: SampleDict, Fortran, and Gnuplot
Geometry Overview

Comparison of actual geometry (red) to computational domain (green)

– Drawing not to scale

Computational Domain

Actual Geometry
Distributor Vanes – Coarse Mesh

- Mesh created using Gridpro
- 15 degree periodicity
- Cell Count: 347,000
- Target y^+: 50 (Wall Functions)

Isometric and detailed view of distributor vane passage with coarse mesh. Images generated using Pointwise®
Distributor Vanes – Coarse Mesh (cont.)

Velocity contour of distributor vanes at axial mid-plane

Note: Wake from guide vane is preserved by cyclic boundary condition

- Solver: simpleFoam
- Uniform inlet velocity (29 deg. swirl)
 - \(U_r = 1.2335 \, \text{m/s} \)
 - \(U_\theta = 2.2252 \, \text{m/s} \)
- Turbulence Model: K-\(\Omega \)
 - Turbulence intensity: 5%
 - Length scale: 1/3 inlet height
- \(y^+ \) average: 60
Distributor Vanes – Coarse Mesh (cont.)

Circumferentially averaged radial, tangential, and axial velocity profiles with comparison to experimental measurements using a coarse mesh at B-B’

- Relatively good agreement with experiment
- Discrepancies may result due to
 - Poorly resolved boundary layers
 - Non-uniform axial inlet
 - Upstream runner effects
Distributor Vanes – Fine Mesh

- Mesh created using **Gridpro** and modified using **Pointwise®**
- Increased axial resolution
- Cell Count: 1,560,000
- Target y^+: 1 (Resolved Sublayer)

Fine Mesh

Coarse Mesh
Distributor Vanes – Fine Mesh (cont.)

- Improvement over coarse mesh
- Poor agreement in radial velocity
 - Most probable cause of error is the non-uniform axial inlet

Circumferentially averaged radial, tangential, and axial velocity profiles with comparison to experimental measurements using a fine mesh at B-B’

![Graph showing velocity profiles](image_url)
GAMM Runner
Runner Analysis

• Mesh
 ▪ Structured mesh: 900,000 Cells
 ▪ Hybrid mesh: 800,000 Cells

• Boundary Condition
 ▪ Inlet: Axi-symmetric profile of experimental velocity values
 → profile1DfixedValue (Turbomachinery SIG)
 ▪ Outlet: Fixed value pressure

• Post-processing
 ▪ Velocity profiles: MapFields, SampleDict, Fortran, and Gnuplot
 ▪ Performance: TurbinePerformance library
 • modification to libturboPerformance (Turbomachinery SIG)
Post-processing Tools

- Map solution to cut-planes
 - mapFields
- Convert mapped solution to cylindrical coordinates
 - convertToCylindrical (B. Lewis)
- Extract cylindrical data
 - sample
- Circumferentially average the sampled data
 - averageCirc.f90 (Fortran Code)
- Compare averaged solution to experiment
 - gnuplot <scriptName>
Runner – Structured Mesh

Detailed view of structured mesh where runner meets the crown

- Mesh created using Pointwise®
- 27.69 degree periodicity
- Cell Count:
 - Runner: 600,000
 - Diffusor: 300,000
- Target y+: 50 (Wall Functions)
- Solver: simpleSRFFoam
- Turbulence Model: K-OmegaSST
Runner – Structured Mesh (cont.)

- Continuity is lost after 150 iterations
- Why?

Residuals for all solution variables with respect to iteration number

Iteration selected for post-processing

Residuals

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Residuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>0.0001</td>
</tr>
<tr>
<td>100</td>
<td>1e-05</td>
</tr>
<tr>
<td>150</td>
<td>0.0001</td>
</tr>
<tr>
<td>200</td>
<td>1e-05</td>
</tr>
<tr>
<td>250</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Variables:
- Ux
- Uy
- Uz
- Omega
- K
- P
Runner – Structured Mesh (cont.)

Circumferentially averaged meridional, tangential, and axial velocity profiles with comparison to experimental at C-C’ at iteration 100

At Iteration 100:
- Efficiency: 119% (92%)
- Torque: 1507.7 Nm (369.1 Nm)
- Head: 19.5 m (5.98 m)

Experimental values in green
Runner – Hybrid Mesh

- Mesh created using **Pointwise**®
- 27.69 degree periodicity
- Cell Count:
 - Runner: 700,000
 - Diffusor: 100,000
- Target y+: 50 (Wall Functions)
- No boundary layer on band and crown
 - Slip walls

Detailed view of hybrid mesh where runner meets the crown
Runner – Hybrid Mesh (cont.)

- Efficiency: 95.8% (92 %)
- Torque: 352.3 Nm (369.1 Nm)
- Head: 5.71 m (5.98 m)

Experimental values in green

Circumferentially averaged meridional, tangential, and axial velocity profiles with comparison to experimental at C-C’
Runner – Hybrid Mesh (cont.)

Circumferentially averaged radial, tangential, and axial velocity profiles with comparison to experimental at D-D’

- Efficiency: 95.8% (92 %)
- Torque: 352.3 Nm (369.1 Nm)
- Head: 5.71 m (5.98 m)

Experimental values in green

Outlet Profile

Circumferentially averaged radial, tangential, and axial velocity profiles with comparison to experimental at D-D’
Summary

• Uniform axial velocity at the distributor inlet is a reasonable approximation, but does not completely predict the correct velocity distribution at the runner inlet plane.

• Only minor improvement in distributor flow was observed with resolved viscous sub-layers.

• Runner analysis ... to be continued.

• Fully coupled runner and distributor simulations needed to accurately analyze rotor-stator interactions (maybe next year).
Questions?

Runner Inlet Profile

Middle Profile

Measured Ur
Measured Utheta
Measured Uz

Measured Um
Measured Utheta
Measured Uz