SELLER’S ATTENTION IN A MULTIPRODUCT STORE

Bulat Gafarov
Penn State University

Dan Greenwald
New York University

John Mondragon
Northwestern University

Leonid Ogrel
Penn State University
QUESTION

How much can rational inattention help us understand variation in nominal rigidity across products and sellers?

- Models with information constraints can rationalize important features of price behavior at the micro level
- Substantial variation in nominal rigidity across products and across sellers
QUESTION

How much can rational inattention help us understand variation in nominal rigidity across products and sellers?

- Models with information constraints can rationalize important features of price behavior at the micro level
- Substantial variation in nominal rigidity across products and across sellers

Our Contribution

- Build a tractable model of multiproduct seller to relate measures of nominal rigidity to product and seller observables
- Quantify in relationships in reduced form
- Calibrate model to quantify costs of rational inattention, state-dependence of nominal rigidity
PREVIEW OF RESULTS

Write down tractable model of rational inattention of multiproduct seller

- Generates clear measures of nominal rigidity related to attention
 - levels per regime and duration of regime

- Simple, intuitive predictions relating product observables to nominal rigidity
 - UPCs with more elastic demand, that generate more revenue, and with more volatile cost shocks should be more flexible
 - Information-constrained sellers should be less responsive to observables
PREVIEW OF RESULTS

Write down tractable model of rational inattention of multiproduct seller

- Generates clear measures of nominal rigidity related to attention
 - levels per regime and duration of regime

- Simple, intuitive predictions relating product observables to nominal rigidity
 - UPCs with more elastic demand, that generate more revenue, and with more volatile cost shocks should be more flexible
 - Information-constrained sellers should be less responsive to observables

Take the model to the data

- Substantial variation in nominal rigidity across and within UPCs

- Sellers pay attention in the way they should, but maybe not that much
 - 1 SD increase in elasticity increases regime duration by two weeks
 - Differences in observables explain 25-50% of variation across good categories

- Sellers who are likely to be more information constrained pay less attention to the observables that should matter
Literature

Rational Inattention and nominal rigidity

- Matejka (2010), Stevens (2013)

- Sims (1998, 2003), etc

Nominal rigidity

Multiproduct sellers

MODEL

Competitive model of consumption and pricing

- No production, no strategic interactions, no dynamics (in baseline)

Household:

- Representative household
- Nested CES demand: across stores and products (UPCs)
- Perfect attention

Seller:

- Sets prices for multiple products in store
- Faces stochastic cost shock (wholesale price)
- Information constraint
- Chooses what to learn about the shock and price as a function of acquired information
Model: Demand

Demand for a UPC \((u)\) at store \((s)\) given by

\[C_{us} = p_{us}^{-\sigma_u} \Omega_u \]
MODEL: SUPPLY

Let κ_{us} be the “attention” paid to pricing a good, the seller’s profit from a product is

$$\pi_{us}(\kappa_{us}) = \Omega_u \psi_{us}(\kappa_{us})$$
Model: Supply

Let κ_{us} be the “attention” paid to pricing a good, the seller’s profit from a product is

$$\pi_{us}(\kappa_{us}) = \Omega_u \psi_{us}(\kappa_{us})$$

Define entropy as

$$H(x) = -\int h(x) \log(h(x)) \, dx.$$

Then

$$\psi_{us}(\kappa_{us}) = \max_f(p_{us},c_{us}) \int \int (p_{us} - c_{us}) p_{us}^{-\sigma_u} f(p_{us},c_{us}) \, dp_{us} \, dc_{us}$$

s.t.

$$f(p_{us},c_{us}) \geq 0,$$

$$\int f(p_{us},c_{us}) \, dp_{us} = g(c_{us}),$$

$$H[g(c_{us})] - E_p[H[f(c_{us}|p_{us})]] \leq \kappa_{us}, \quad (\Lambda(\kappa_{us}, \sigma_u, g(c_{us})))$$
MODEL

Before setting a price for each product, the seller decides how much attention to pay to each product

\[
\max_{\kappa_{us}} \sum_u \pi_{us}(\kappa_{us})
\]

\[
\sum_u \kappa_{us} \leq K_s, \quad (\mu_s).
\]
MODEL

Taking the first order condition, log-linearizing, and substituting:

\[\kappa_{us} = \beta_{us} + \beta_{us}^\Omega \log(\Omega_u) + \beta_{us}^\sigma \sigma_u + \beta_{us}^{var} \text{var}(c_u) \]

where

\[\beta_{us} \equiv \left(\frac{\partial \log \Lambda_{us}}{\partial \kappa_{us}} \right)^{-1} (\log \mu_s - \log \Lambda_{us}) \]

\[\beta_{us}^\Omega \equiv -\left(\frac{\partial \log \Lambda_{us}}{\partial \kappa_{us}} \right)^{-1}, \quad \text{(Demand)} \]

\[\beta_{us}^\sigma \equiv -\left(\frac{\partial \log \Lambda_{us}}{\partial \kappa_{us}} \right)^{-1} \frac{\partial \log \Lambda_{us}}{\partial \sigma_u}, \quad \text{(Elasticity)} \]

\[\beta_{us}^{var} \equiv -\left(\frac{\partial \log \Lambda_{us}}{\partial \kappa_{us}} \right)^{-1} \frac{\partial \log \Lambda_{us}}{\partial \text{var}(c)_u}, \quad \text{(Shock volatility)} \]

We can run the simple regression using observations on stores and UPCs

\[\kappa_{us} = \alpha + \beta_1 \log(\Omega_u) + \beta_2 \sigma_u + \beta_3 \text{var}(c_u) + e_{us} \]
DATA AND MEASUREMENT

IRI Marketing: **prices and quantities**
- Weekly store sales at UPC level for 30 categories, 2001-2008
- 47 markets, we limit ourselves to one (San Francisco)
- 54 grocery stores

PromoData Price-Trak: **wholesale costs to retailers**
- Survey of large wholesale firms (~one per market)
- UPC-level, daily
DATA AND MEASUREMENT

UPC Elasticities: σ^u
- CES: regress expenditure shares on price changes (time differenced)
 - Fixed effects: store, date, upc X date
 - Hausman (1993) instruments: price changes in other market
- Non-linear (in progress)

UPC Demand: Ω_u
- We show: $\Omega_u \propto$ revenue
- Model assumes UPC-level demand is the relevant observable
 - Revenue generated in SF market 2001-2008 in IRI data
 - Can also use share of revenue within store

UPC cost shock volatility: c_u
- Reported wholesale prices (including discounts, etc)
- Expected absolute price change (normalized by average price)
MEASURING REGIMES

Related to v-shaped filter ala Nakamura and Steinsson (2008), but results similar to running-mode as in Kehoe and Midrigan (2010)
Variation in Nominal Rigidity: Categories

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levels</td>
<td>1.92</td>
<td>0.36</td>
</tr>
<tr>
<td>Length (weeks)</td>
<td>14.8</td>
<td>3.06</td>
</tr>
</tbody>
</table>
VARIATION IN REGIME DURATION ACROSS STORE-UPC

<table>
<thead>
<tr>
<th>Store-UPC</th>
<th>SD</th>
<th>12.14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share Within UPCs</td>
<td>43%</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>208,878</td>
<td></td>
</tr>
</tbody>
</table>
Variation in Regime Levels across Store-UPC

<table>
<thead>
<tr>
<th>Store-UPC</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td>0.893</td>
</tr>
<tr>
<td>Share Within UPCs</td>
<td>69%</td>
</tr>
<tr>
<td>N</td>
<td>210,996</td>
</tr>
</tbody>
</table>
Variation in Regime Duration across UPCs

Average Duration\(_{ucs}\) = \(\alpha + \beta_1 Elasticity_u + \beta_2 \log(Revenue_u) + \beta_3 \sigma(costs_u) + e_{ucs}\)

- **Elasticity** (\(\beta_1\))
- **Log Revenue** (\(\beta_2\))
- **Costs** (\(\beta_3\))

| FE | N | R2 |
VARIATION IN REGIME DURATION ACROSS UPCs

\[
\text{Average Duration}_{\text{ucs}} = \alpha_c + \beta_1 \text{Elasticity}_u + \beta_2 \log(\text{Rev}_u) + \beta_3 \sigma(\text{costs}_u) + e_{\text{ucs}}
\]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Elasticity (β_1)</td>
<td>-1.406***</td>
<td>(0.149)</td>
</tr>
<tr>
<td>Log Revenue (β_2)</td>
<td>-0.246</td>
<td>(0.200)</td>
</tr>
<tr>
<td>Costs (β_3)</td>
<td>-1.810***</td>
<td>(0.067)</td>
</tr>
</tbody>
</table>

FE --

N 25248
R2 0.053
Variation in Regime Duration across UPCs

\[\text{Average Duration}_{ucs} = \alpha_c + \beta_1 \text{Elasticity}_u + \beta_2 \text{Log}(Rev_u) + \beta_3 \sigma(\text{costs}_u) + e_{ucs} \]

<table>
<thead>
<tr>
<th>Elasticity (β_1)</th>
<th>-1.406***</th>
<th>-2.126***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.149)</td>
<td>(0.116)</td>
</tr>
<tr>
<td>Log Revenue (β_2)</td>
<td>-0.246</td>
<td>-1.044***</td>
</tr>
<tr>
<td></td>
<td>(0.200)</td>
<td>(0.132)</td>
</tr>
<tr>
<td>Costs (β_3)</td>
<td>-1.810***</td>
<td>-0.932***</td>
</tr>
<tr>
<td></td>
<td>(0.067)</td>
<td>(0.070)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FE</th>
<th>--</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>25248</td>
<td>25248</td>
</tr>
<tr>
<td>R2</td>
<td>0.053</td>
<td>0.194</td>
</tr>
</tbody>
</table>
Variation in Regime Duration across UPCs

Average Duration_{ucs} = \alpha_c + \beta_1 Elasticity_u + \beta_2 \log(Rev_u) + \beta_3 \sigma(costs_u) + e_{ucs}

<table>
<thead>
<tr>
<th></th>
<th>\beta_1</th>
<th>\beta_2</th>
<th>\beta_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elasticity</td>
<td>-1.406***</td>
<td>-2.126***</td>
<td>-2.017***</td>
</tr>
<tr>
<td></td>
<td>(0.149)</td>
<td>(0.116)</td>
<td>(0.115)</td>
</tr>
<tr>
<td>Log Revenue</td>
<td>-0.246</td>
<td>-1.044***</td>
<td>-0.967***</td>
</tr>
<tr>
<td></td>
<td>(0.200)</td>
<td>(0.132)</td>
<td>(0.116)</td>
</tr>
<tr>
<td>Costs</td>
<td>-1.810***</td>
<td>-0.932***</td>
<td>-0.925***</td>
</tr>
<tr>
<td></td>
<td>(0.067)</td>
<td>(0.070)</td>
<td>(0.076)</td>
</tr>
</tbody>
</table>

FE -- Category
N 25248 25248 25248
R2 0.053 0.194 0.330
Variation in Regime Levels Across UPCs

Average # Levels = $\alpha_c + \beta_1 Elasticity_u + \beta_2 \log(Rev_u) + \beta_3 \sigma(costs_u) + e_{uc_s}$

<table>
<thead>
<tr>
<th></th>
<th>Elasticity (β_1)</th>
<th>Log Revenue (β_2)</th>
<th>Costs (β_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.0839***</td>
<td>0.389***</td>
<td>0.0402*</td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td>(0.037)</td>
<td>(0.018)</td>
</tr>
<tr>
<td></td>
<td>-0.0423*</td>
<td>0.362***</td>
<td>0.0807***</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.038)</td>
<td>(0.017)</td>
</tr>
<tr>
<td></td>
<td>-0.0229</td>
<td>0.388***</td>
<td>0.0857***</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.041)</td>
<td>(0.019)</td>
</tr>
</tbody>
</table>

- FE: --
- N: 25248
- R2: 0.043

<table>
<thead>
<tr>
<th></th>
<th>Category</th>
<th>Category-Store</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>25248</td>
<td>25248</td>
</tr>
<tr>
<td>R2</td>
<td>0.086</td>
<td>0.470</td>
</tr>
</tbody>
</table>
Variation in Regime Duration within UPCs

\[
\text{Average Duration}_{\text{ucs}} = \alpha_c + \beta_1 \text{Elasticity}_u + \beta_2 \text{Log}(\text{Rev}_u) + \beta_3 \sigma(\text{costs}_u) + e_{\text{ucs}}
\]
Variation in Regime Levels within UPCs

Average \# Levels_{ucs} = \alpha_c + \beta_1 Elasticity_u + \beta_2 \log(Rev_u) + \beta_3 \sigma(costs_u) + e_{ucs}
Conclusions and Going Forward

Conclusions:

- Product observables are related to nominal rigidity in intuitive ways
 - 25-50% of variation across product categories related to these observables
 - But economic effects appear small

- Firms that are more rigid on average are also less responsive to observables
 - Unlikely to be generated by menu costs

- Rational inattention model calibrated to these results suggest costs of inattention are small
 - Removing information capacity constraint increases profit by at most 10%
 - Likely consistent with monetary non-neutrality (speculative)

Going forward:

- Extend sample to additional markets
- Alternative demand systems
- Explore state-dependence (local employment, etc)
- Full general equilibrium model to determine macroeconomic implications