Kernel Mean Estimation via Spectral Filtering: Supplementary Material

Krikamol Muandet
MPI-IS, Tübingen
krikamol@tue.mpge.de

Bharath Sriperumbudur
Dep. of Statistics, PSU
bks18@psu.edu

Bernhard Schölkopf
MPI-IS, Tübingen
bs@tue.mpge.de

Abstract

This note contains supplementary materials to Kernel Mean Estimation via Spectral Filtering.

1 Proof of Theorem 1

(i) Since \(\hat{\mu}_\lambda = \frac{\hat{\mu}_p}{\lambda+1} \), we have

\[
\| \hat{\mu}_\lambda - \mu_P \| = \left\| \frac{\hat{\mu}_P}{\lambda+1} - \mu_P \right\| \leq \left\| \frac{\hat{\mu}_P}{\lambda+1} - \frac{\mu_P}{\lambda+1} \right\| + \left\| \frac{\mu_P}{\lambda+1} - \mu_P \right\| \leq \| \hat{\mu}_P - \mu_P \| + \lambda \| \mu_P \|.
\]

From [1], we have that \(\| \hat{\mu}_P - \mu_P \| = O_P(n^{-1/2}) \) and therefore the result follows.

(ii) Define \(\Delta := \mathbb{E}_P \| \hat{\mu}_P - \mu_P \|^2 = \int k(x,x) d\mathbb{P}(x) - \| \mu_P \|^2 \). Consider

\[
\mathbb{E}_P \| \hat{\mu}_\lambda - \mu_P \|^2 - \Delta = \mathbb{E}_P \left[\left\| \frac{n^\beta}{n^\beta+c} (\hat{\mu}_P - \mu_P) - \mu_P \right\|^2 - \Delta \right] = \left(\frac{n^\beta}{n^\beta+c} \right)^2 \Delta + \frac{c^2}{(n^\beta+c)^2} \| \mu_P \|^2 - \Delta = \frac{c^2 \| \mu_P \|^2 - (c^2 + 2cn^\beta) \Delta}{(n^\beta+c)^2}.
\]

Substituting for \(\Delta \) in the r.h.s. of the above equation, we have

\[
\mathbb{E}_P \| \hat{\mu}_\lambda - \mu_P \|^2 - \Delta = \frac{(nc^2 + c^2 + 2cn^\beta) \| \mu_P \|^2 - (c^2 + 2cn^\beta) \int k(x,x) d\mathbb{P}(x)}{n(n^\beta+c)^2}.
\]

It is easy to verify that \(\mathbb{E}_P \| \hat{\mu}_\lambda - \mu_P \|^2 - \Delta < 0 \) if

\[
\int k(x,x) d\mathbb{P}(x) < \inf \frac{c^2 + 2cn^\beta}{nc^2 + c^2 + 2cn^\beta} = \frac{2^{1/\beta} \beta}{2^{1/\beta} \beta + c^{1/\beta}(\beta - 1)^{(\beta-1)/\beta}}.
\]

Remark. If \(k(x,y) = (x,y) \), then it is easy to check that \(\mathcal{P}_{\epsilon,\beta} = \{ \mathbb{P} \in M_+^1(\mathbb{R}^d) : \frac{\| \theta \|^2}{\text{trace}(\Sigma)} < \frac{\epsilon}{1-\epsilon} \} \) where \(\theta \) and \(\Sigma \) represent the mean vector and covariance matrix. Note that this choice of kernel yields a setting similar to classical James-Stein estimation, wherein for all \(n \) and all \(\mathbb{P} \in \mathcal{P}_{\epsilon,\beta} = \{ \mathbb{P} \in N_{\theta,\sigma} : \| \theta \| < \sigma \sqrt{dA/(1-A)} \} \), \(\hat{\mu}_\lambda \) is admissible for any \(d \), where \(N_{\theta,\sigma} := \{ \mathbb{P} \in M_+^1(\mathbb{R}^d) : d\mathbb{P}(x) = (2\pi \sigma^2)^{-d/2} \frac{e^{-\frac{(x-\theta)^2}{2\sigma^2}}}{2\pi^d} dx, \ \theta \in \mathbb{R}^d, \ \sigma > 0 \} \). On the other hand, the James-Stein estimator is admissible for only \(d \geq 3 \) but for any \(\mathbb{P} \in N_{\theta,\sigma} \).
2 Consequence of Theorem 1 if k is translation invariant

Claim: Let $k(x, y) = \psi(x - y)$, $x, y \in \mathbb{R}^d$ where ψ is a bounded continuous positive definite function with $\psi \in L^1(\mathbb{R}^d)$. For $\lambda = cn^{-\beta}$ with $c > 0$ and $\beta > 1$, define

$$\mathcal{P}_{c, \beta, \psi} := \left\{ P \in M_+^1(\mathbb{R}^d) : \| \phi_P \|_{L^2} < \sqrt{\frac{A(2\pi)^d/2}{\| \psi \|_{L^1}}} \right\},$$

where ϕ_P is the characteristic function of P. Then $\forall n$ and $\forall P \in \mathcal{P}_{c, \beta, \psi}$, we have $E_P[\bar{\mu}_h - \mu_P]^2 < E_P[\bar{\mu}_h - \mu_P]^2$.

Proof. If $k(x, y) = \psi(x - y)$, it is easy to verify that

$$\int \int k(x, y) dP(x) dP(y) = \int |\phi_P(\omega)|^2 \hat{\psi}(\omega) d\omega \leq \sup_{\omega \in \mathbb{R}^d} \hat{\psi}(\omega) \| \phi_P \|^2_{L_2} \leq (2\pi)^{-d/2} \| \psi \|_{L_1} \| \phi_P \|^2_{L_2},$$

where $\hat{\psi}$ is the Fourier transform of ψ. On the other hand, since $|\phi_P(\omega)| \leq 1$ for any $\omega \in \mathbb{R}^d$, we have

$$\int \int k(x, y) dP(x) dP(y) = \int |\phi_P(\omega)|^2 \hat{\psi}(\omega) d\omega \leq \int |\phi_P(\omega)| \hat{\psi}(\omega) d\omega \leq \| \phi_P \|_{L^2} \| \hat{\psi} \|_{L^2} \leq \| \phi_P \|_{L^2} \sqrt{\| \hat{\psi} \|_{L^1} \| \hat{\psi} \|_{L^1}},$$

where we used $\psi(0) = |\hat{\psi}|_{L^1}$. As $k(x, x) dP(x) = \psi(0)$, we have that

$$\| \mu_P \|^2 \leq \min \left\{ \frac{\| \phi_P \|^2_{L_2} \| \psi \|_{L_1}}{(2\pi)^{d/2} \psi(0)} : \sqrt{\frac{\| \phi_P \|^2_{L_2} \| \psi \|_{L_1}}{(2\pi)^{d/2} \psi(0)}} \right\}.$$

Since $P \in \mathcal{P}_{c, \beta, \psi}$, we have $P \in \mathcal{P}_{c, \beta}$ and therefore the result follows.

3 Proof of Theorem 2

Since $(e_i)_i$ is an orthonormal basis in \mathcal{H}, we have for any P and $f^* \in \mathcal{H}$

$$\mu_P = \sum_{i=1}^{\infty} \mu_i e_i, \quad \bar{\mu}_P = \sum_{i=1}^{\infty} \bar{\mu}_i e_i, \quad \text{and} \quad f^* = \sum_{i=1}^{\infty} f^*_i e_i,$$

where $\mu_i := \langle \mu_P, e_i \rangle$, $\bar{\mu}_i := \langle \bar{\mu}_P, e_i \rangle$, and $f^*_i := \langle f^*, e_i \rangle$. If follows from the Parseval’s identity that

$$\Delta = E_P[|\bar{\mu} - \mu|^2] = E_P \left[\sum_{i=1}^{\infty} (\bar{\mu}_i - \mu_i)^2 \right] = \sum_{i=1}^{\infty} \Delta_i,$$

$$\Delta_{\alpha} = E_P[|\bar{\mu}_\alpha - \mu|^2] = E_P \left[\sum_{i=1}^{\infty} (\alpha_i f_i^* + (1 - \alpha_i) \bar{\mu}_i - \mu_i)^2 \right] = \sum_{i=1}^{\Delta_{\alpha}} \Delta_{\alpha, i}.$$

Note that the problem has not changed and we are merely looking at it from a different perspective. To estimate μ_P, we may just as well estimate its Fourier coefficient sequence μ_i with $\bar{\mu}_i$. Based on above decomposition, we may write the risk difference $\Delta_{\alpha} - \Delta$ as $\sum_{i=1}^{\infty} (\Delta_{\alpha, i} - \Delta_i)$. We can thus ask under which conditions on $\alpha = (\alpha_i)$ for which $\Delta_{\alpha, i} - \Delta_i < 0$ uniformly over all i.

For each coordinate i, we have

$$\Delta_{\alpha, i} - \Delta_i = E_P \left[[(\alpha_i f_i^* + (1 - \alpha_i) \bar{\mu}_i - \mu_i)^2] - E_P \left[(\bar{\mu}_i - \mu_i)^2 \right] \right] = E_P[\alpha_i^2 f_i^2 + 2\alpha_i f_i^* (1 - \alpha_i) \bar{\mu}_i + (1 - \alpha_i)^2 \mu_i^2 - 2\alpha_i f_i^* \bar{\mu}_i - 2(1 - \alpha_i) \bar{\mu}_i \mu_i + \mu_i^2] = \alpha_i^2 f_i^2 + 2\alpha_i f_i^* \bar{\mu}_i - 2\alpha_i \bar{\mu}_i \mu_i + (1 - \alpha_i)^2 \mu_i^2.$$
Next, we substitute $E_P[\hat{\mu}^2] = E_P[(\hat{\mu}_i - \mu_i + \mu_i)^2] = \Delta_i + \mu_i^2$ into the last equation to obtain
\[
\Delta_{\alpha,i} - \Delta_i = \alpha_i^2 f_i^2 - 2\alpha_i^2 f_i^* \mu_i + \alpha_i^2 (\Delta_i + \mu_i^2) - 2\alpha_i (\Delta_i + \mu_i^2) + 2\alpha_i \mu_i^2 = \alpha_i^2 (f_i^2 - 2f_i^* \mu_i + \Delta_i + \mu_i^2) - 2\alpha_i \Delta_i = \alpha_i^2 (\Delta_i + (f_i^* - \mu_i)^2) - 2\alpha_i \Delta_i,
\]
which is negative if α_i satisfies
\[
0 < \alpha_i < \frac{2\Delta_i}{\Delta_i + (f_i^* - \mu_i)^2}.
\]
This completes the proof.

4 Proof of Proposition 3

Let $K = UDU^T$ be an eigen-decomposition of K where $U = [\hat{u}_1, \hat{u}_2, \ldots, \hat{u}_n]$ consists of orthogonal eigenvectors of K such that $U^T U = I$ and $D = \text{diag}(\hat{\gamma}_1, \hat{\gamma}_2, \ldots, \hat{\gamma}_n)$ consists of corresponding eigenvalues. As a result, the coefficients $\beta(\lambda)$ can be written as
\[
\beta(\lambda) = g_\lambda(K)K1_n = U g_\lambda(D)U^T K1_n = \sum_{i=1}^{n} \hat{u}_i g_\lambda(\hat{\gamma}_i) \hat{u}_i^T K1_n.
\]
Using $K1_n = [(\hat{\mu}, k(x_1, \cdot)), \ldots, (\hat{\mu}, k(x_n, \cdot))]^T$, we can rewrite (1) as
\[
\beta(\lambda) = \sum_{i=1}^{n} \hat{u}_i g_\lambda(\hat{\gamma}_i) \sum_{j=1}^{n} \hat{u}_{ij} (\hat{\mu}, k(x_j, \cdot)) = \sum_{i=1}^{n} \sqrt{\hat{\gamma}_i} \hat{u}_i g_\lambda(\hat{\gamma}_i) \left(\hat{\mu}, \frac{1}{\sqrt{\hat{\gamma}_i}} \sum_{j=1}^{n} \hat{u}_{ij} k(x_j, \cdot) \right),
\]
where \hat{u}_{ij} is the jth component of \hat{u}_i. Next, we invoke the relation between the eigenvectors of the matrix K and the eigenfunctions of the empirical covariance operator \hat{C}_K in \mathcal{H}. That is, it is known that the ith eigenfunction of \hat{C}_K can be expressed as $\hat{v}_i = (1/\sqrt{\hat{\gamma}_i}) \sum_{j=1}^{n} \hat{u}_{ij} k(x_j, \cdot)$ [2]. Consequently,
\[
\left(\hat{\mu}, \frac{1}{\sqrt{\hat{\gamma}_i}} \sum_{j=1}^{n} \hat{u}_{ij} k(x_j, \cdot) \right) = \langle \hat{\mu}, \hat{v}_i \rangle
\]
and we can write the Spectral-KMSE as
\[
\hat{\mu}_\lambda = \sum_{j=1}^{n} \left[\sum_{i=1}^{n} \hat{u}_{ij} \sqrt{\hat{\gamma}_i} g_\lambda(\hat{\gamma}_i) \langle \hat{\mu}, \hat{v}_i \rangle \right] k(x_j, \cdot) = \sum_{i=1}^{n} \sqrt{\hat{\gamma}_i} g_\lambda(\hat{\gamma}_i) \langle \hat{\mu}, \hat{v}_i \rangle \sum_{j=1}^{n} \hat{u}_{ij} k(x_j, \cdot) = \sum_{i=1}^{n} g_\lambda(\hat{\gamma}_i) \hat{\gamma}_i \langle \hat{\mu}, \hat{v}_i \rangle \hat{v}_i.
\]
This completes the proof.

5 Population counterpart of Spectral-KMSE

To obtain the population version of the Spectral-KMSE, we resort to the regression perspective of the kernel mean embedding which has been studied earlier in [3, 4]. The proof techniques used here are similar to those in [3]. Consider
\[
\arg\min_{F \in \mathcal{H} \otimes \mathcal{H}} E_X \left[\|k(X, \cdot) - Fk(X, \cdot)\|_2^2 \right] + \lambda \|F\|^2_{HS}.
\]
where $F : \mathcal{H} \to \mathcal{H}$ is Hilbert-Schmidt. We can expand the regularized loss (2) as

$$
\mathbb{E}_X \left[||k(X, \cdot) - F k(X, \cdot)||_\mathcal{C}^2 + \lambda \|F\|_{HS}^2 \right] = \mathbb{E}_X \langle k(X, \cdot), k(X, \cdot) \rangle_\mathcal{C} - 2 \mathbb{E}_X \langle k(X, \cdot), F k(X, \cdot) \rangle_\mathcal{C} + \mathbb{E}_X \langle F k(X, \cdot), F k(X, \cdot) \rangle_\mathcal{C} + \lambda \langle F, F \rangle_{HS}
$$

$$
= \mathbb{E}_X \langle k(X, \cdot), k(X, \cdot) \rangle_\mathcal{C} - 2 \mathbb{E}_X \langle k(X, \cdot) \otimes k(X, \cdot), F \rangle_{HS} + \mathbb{E}_X \langle k(X, \cdot), F^* F k(X, \cdot) \rangle_\mathcal{C} + \lambda \langle F, F \rangle_{HS}
$$

where F^* denotes the adjoint of F and $C_k = \mathbb{E}_X [k(X, \cdot) \otimes k(X, \cdot)]$. Next, we show that the solution to the above expression is $F := C_k (C_k + \lambda I)^{-1}$. Defining $A := F (C_k + \lambda I)^{1/2}$, the above expression can be rewritten as

$$
\mathbb{E}_X \langle k(X, \cdot), k(X, \cdot) \rangle_\mathcal{C} - 2 \langle C_k, F \rangle_{HS} + \langle C_k, F^* F \rangle_{HS} + \lambda \langle F, F \rangle_{HS}
$$

$$
= \mathbb{E}_X \langle k(X, \cdot), k(X, \cdot) \rangle_\mathcal{C} - 2 \langle C_k, A (C_k + \lambda I)^{-1/2} \rangle_{HS} + \langle A, A \rangle_{HS}
$$

$$
= \mathbb{E}_X \langle k(X, \cdot), k(X, \cdot) \rangle_\mathcal{C} - \|C_k (C_k + \lambda I)^{-1/2} \|_{HS}^2 + \|C_k (C_k + \lambda I)^{-1/2} - A \|_{HS}^2.
$$

As a result, the above expression is minimized when $A = C_k (C_k + \lambda I)^{-1/2}$, implying that $F = C_k (C_k + \lambda I)^{-1}$. As in the sample case, a natural estimate of the Spectral-KMSE is

$$
\mu_\lambda = F \mu_\beta = C_k (C_k + \lambda I)^{-1} \mu_\beta.
$$

\section{Proof of Proposition 4}

The proof employs the relation between the Gram matrix K and the empirical covariance operator C_k shown in Lemma 3. It is known that the operator C_k is of finite rank, self-adjoint, and positive. Moreover, its spectrum has only finitely many nonzero elements [5]. If γ_i is a nonzero eigenvalue and \tilde{v}_i is the corresponding eigenfunction of C_k, then the following decomposition holds

$$
C_k f = \sum_{i=1}^n \gamma_i \langle f, \tilde{v}_i \rangle \tilde{v}_i, \quad \forall f \in \mathcal{H}.
$$

Note that it may be that $k < n$ where k is the rank of C_k. In that case, the above decomposition still holds. Setting $f = \mu$ and applying the definition of the filter function g_λ to the operator C_k yield

$$
\mu_\lambda = C_k g_\lambda (C_k) \mu = \sum_{i=1}^n g_\lambda (\gamma_i) \gamma_i \langle \mu, \tilde{v}_i \rangle \tilde{v}_i,
$$

which is exactly the decomposition given in Lemma 3. This completes the proof.

\section{Proof of Theorem 5}

Consider the following decomposition

$$
\mu_\lambda - \mu_\beta = C_k g_\lambda (C_k) \mu_\beta - \mu_\beta = C_k g_\lambda (C_k) (\mu_\beta - \mu_\beta) + C_k g_\lambda (C_k) \mu_\beta - \mu_\beta
$$

$$
= C_k g_\lambda (C_k) (\mu_\beta - \mu_\beta) + (C_k g_\lambda (C_k) - I) \hat{C}_k \beta \hat{h} + (C_k g_\lambda (C_k) - I) (C_k^0 - \hat{C}_k^0) \beta \hat{h}
$$

where we used the fact that there exists $h \in \mathcal{H}$ such that $\mu_\beta = C_k^0 h$ as we assumed that $\mu_\beta \in \mathcal{R}(C_k^0)$ for some $\beta > 0$. Therefore

$$
\|\mu_\lambda - \mu_\beta\| \leq \|C_k g_\lambda (C_k)\|_{op} \|\mu_\beta - \mu_\beta\| + \|C_k g_\lambda (C_k) - I\|_{op} \|\hat{C}_k \beta \hat{h}\| + \|C_k g_\lambda (C_k) - I\|_{op} \|C_k^0 - \hat{C}_k^0\|_{op} \|\hat{h}\|
$$

where we used the fact that $\|A b\| \leq \|A\|_{op} \|b\|$ with $A : \mathcal{H} \to \mathcal{H}$ being a bounded operator, $b \in \mathcal{H}$ and $\|\cdot\|_{op}$ denoting the operator norm defined as $\|A\|_{op} := \sup \{\|A b\| : \|b\| = 1\}$.

4
By (C1), (C2) and (C3), we have \(\| \hat{C}_k g_\lambda(\hat{C}_k) \|_{op} \leq B, \| \hat{C}_k g_\lambda(\hat{C}_k) - I \|_{op} \leq C \) and \(\| (\hat{C}_k g_\lambda(\hat{C}_k) - I)^{\beta \gamma} \|_{op} \leq D^{\lambda \mu} \) respectively. Denoting \(\| h \| = \| C_k^{-\beta} \mu_p \| \), we therefore have

\[
\| \hat{\mu}_\lambda - \mu_p \| \leq B \| \hat{\mu}_p - \mu_p \| + D^{\lambda \mu} \| C_k^{-\beta} \mu_p \| + C \| C_k^{-\beta} \|_{op} \| C_k^{-\beta} \mu_p \|.
\]

(3)

For \(0 \leq \beta \leq 1 \), it follows from Theorem 1 in [6] that there exists a constant \(\tau_1 \) such that

\[
\| C_k^\beta - \hat{C}_k^\beta \|_{op} \leq \tau_1 \| C_k - \hat{C}_k \|_{op}^{\beta} \leq \tau_1 \| C_k - \hat{C}_k \|_{HS}^{\beta}.
\]

On the other hand, since \(\alpha \to \alpha^\beta \) is Lipschitz on \([0, \kappa^2]\) for \(\beta \geq 1 \), the following lemma yields that

\[
\| C_k^\beta - \hat{C}_k^\beta \|_{op} \leq \| C_k^\beta - \hat{C}_k^\beta \|_{HS} \leq \tau_2 \| C_k - \hat{C}_k \|_{HS}
\]

where \(\tau_2 \) is the Lipschitz constant of \(\alpha \to \alpha^\beta \) on \([0, \kappa^2]\). In other words,

\[
\| C_k^\beta - \hat{C}_k^\beta \|_{op} \leq \max \{ \tau_1, \tau_2 \} \| C_k - \hat{C}_k \|_{HS}^{\min \{1, \beta\}}.
\]

(4)

Lemma 1 (Contributed by Andreas Maurer, see Lemma 5 in [7]). Suppose \(A \) and \(B \) are self-adjoint Hilbert-Schmidt operators on a separable Hilbert space \(H \) with spectrum contained in the interval \([a, b]\), and let \((\sigma_i)_{i \in I} \) and \((\tau_j)_{j \in J} \) be the eigenvalues of \(A \) and \(B \), respectively. Given a function \(r : [a, b] \to \mathbb{R} \), if there exists a finite constant \(L \) such that

\[
| r(\sigma_i) - r(\tau_j) | \leq L | \sigma_i - \tau_j |, \quad \forall i \in I, j \in J,
\]

then

\[
\| r(A) - r(B) \|_{HS} \leq L \| A - B \|_{HS}.
\]

Using (4) in (3), we have

\[
\| \hat{\mu}_\lambda - \mu_p \| \leq B \| \hat{\mu}_p - \mu_p \| + D^{\lambda \mu} \| C_k^{-\beta} \mu_p \| + C \| C_k^{-\beta} \|_{op} \| C_k^{-\beta} \mu_p \|,
\]

(5)

where \(\tau := \max \{ \tau_1, \tau_2 \} \). We now obtain bounds on \(\| \hat{\mu}_p - \mu_p \| \) and \(\| C_k - \hat{C}_k \|_{HS} \) using the following results.

Lemma 2 ([8]). Suppose that \(\kappa = \sup_{x \in X} \sqrt{k(x, x)} \). For any \(\delta > 0 \), the following inequality holds with probability at least \(1 - e^{-\delta} \)

\[
\| \hat{\mu}_p - \mu_p \| \leq \frac{2 \kappa + \kappa \sqrt{2\delta}}{\sqrt{n}}.
\]

Lemma 3 (e.g., see Theorem 7 in [5]). Let \(\kappa := \sup_{x \in X} \sqrt{k(x, x)} \). For \(n \in \mathbb{N} \) and any \(\delta > 0 \), the following inequality holds with probability at least \(1 - 2e^{-\delta} \):

\[
\| \hat{C}_k - C_k \|_{HS} \leq \frac{2 \sqrt{2} \kappa \sqrt{\delta}}{\sqrt{n}}.
\]

Using Lemmas 2 and 3 in (5), for any \(\delta > 0 \), with probability \(1 - 3e^{-\delta} \), we obtain

\[
\| \hat{\mu}_\lambda - \mu_p \| \leq \frac{2 \kappa B + \kappa B \sqrt{2\delta}}{\sqrt{n}} + D^{\lambda \mu} \| C_k^{-\beta} \mu_p \| + C \| C_k^{-\beta} \|_{op} \| C_k^{-\beta} \mu_p \|,
\]

(5)

8 Shrinkage parameter \(\lambda = cn^{-\beta} \)

In this section, we provide supplementary results that demonstrate the effect of the shrinkage parameter \(\lambda \) presented in Theorem 1. That is, if we choose \(\lambda = cn^{-\beta} \) for some \(c > 0 \) and \(\beta > 1 \), the estimator \(\hat{\mu}_\lambda \) is a proper estimator of \(\mu \). Unfortunately, the true value of \(\beta \), which characterizes the smoothness of the true kernel mean \(\mu_p \), is not known in practice. Nevertheless, we provide simulated experiments that illustrate the convergence of the estimator \(\hat{\mu}_\lambda \) for different values of \(c \) and \(\beta \).

The data-generating distribution used in this experiment is identical to the one we consider in our previous experiments on synthetic data. That is, the data are generated as follows: \(x \sim \)
Figure 1: The risk of shrinkage estimator $\hat{\mu}_\lambda$ when $\lambda = cn^{-\beta}$. The left figure shows the risk of the shrinkage estimator as sample size increases while fixing the value of β, whereas the right figure shows the same plots while fixing the value of c. See text for more explanation.

$$\sum_{i=1}^{4} \pi_i N(\theta_i, \Sigma_i) + \varepsilon, \theta_{ij} \sim U(-10, 10), \Sigma_i \sim W(3 \times I_d, 7), \varepsilon \sim N(0, 0.2 \times I_d)$$

where $U(a, b)$ and $W(\Sigma, df)$ are the uniform distribution and Wishart distribution, respectively. We set $\pi = [0.05, 0.3, 0.4, 0.25]$. We use the Gaussian RBF kernel $k(x, x') = \exp(-\|x-x'\|^2/2\sigma^2)$ whose bandwidth parameter is calculated using the median heuristic, i.e., $\sigma^2 = \text{median}\{\|x_i - x_j\|^2\}$.

Figure 1 depicts the comparisons between the standard kernel mean estimator and the shrinkage estimators with varying values of c and β.

As we can see in Figure 1, if c is very small or β is very large, the shrinkage estimator $\hat{\mu}_\lambda$ behaves like the empirical estimator $\hat{\mu}_P$. This coincides with the intuition given in Theorem 1. Note that the value of β specifies the smoothness of the true kernel mean μ and is unknown in practice. Thus, one of the interesting future directions is to develop procedure that can adapt to this unknown parameter automatically.

References