Injective Hilbert Space Embeddings of Probability Measures

Bharath K. Sriperumbudur

University of California, San Diego
&
MPI for Biological Cybernetics, Tübingen

Joint work with:
Arthur Gretton, Bernhard Schölkopf (MPI, Tübingen)
Kenji Fukumizu (Institute for Statistical Mathematics, Tokyo)
Gert Lanckriet (University of California, San Diego)
Probability Metrics

Setup:
- \(M \): measurable space.
- \(\mathcal{P} \): set of all Borel probability measures defined on \(M \).

To do:
- Define a metric, \(\gamma \) on \(\mathcal{P} \).
- \(\gamma \) is called the probability metric.

Popular examples:
- Kullback-Leibler divergence
- Jensen-Shannon divergence
- Total-variation distance (metric)
- Hellinger distance
- \(\chi^2 \)-distance

The above examples are special instances of Csiszár’s f-divergence.
Applications

Two-sample problem:

- Given random samples \(\{X_1, \ldots, X_m\} \) and \(\{Y_1, \ldots, Y_n\} \) drawn i.i.d. from \(\mathbb{P} \) and \(\mathbb{Q} \), respectively.
- **Determine:** are \(\mathbb{P} \) and \(\mathbb{Q} \) different?

\[\gamma(\mathbb{P}, \mathbb{Q}) : \text{distance metric between } \mathbb{P} \text{ and } \mathbb{Q}. \]

\[H_0 : \mathbb{P} = \mathbb{Q} \quad \text{ vs. } \quad H_1 : \mathbb{P} \neq \mathbb{Q} \]

\[H_0 : \gamma(\mathbb{P}, \mathbb{Q}) = 0 \quad \text{ vs. } \quad H_1 : \gamma(\mathbb{P}, \mathbb{Q}) > 0 \]

- **Test statistic:** \(\gamma(., .) \)

Other applications: Hypothesis testing (independence tests, goodness-of-fit tests), Central limit theorems, Density estimation, Markov chain Monte Carlo etc.
Applications

Two-sample problem:

- Given random samples \(\{X_1, \ldots, X_m\} \) and \(\{Y_1, \ldots, Y_n\} \) drawn i.i.d. from \(\mathbb{P} \) and \(\mathbb{Q} \), respectively.
- **Determine**: are \(\mathbb{P} \) and \(\mathbb{Q} \) different?

 \[\gamma(\mathbb{P}, \mathbb{Q}) : \text{distance metric between } \mathbb{P} \text{ and } \mathbb{Q}. \]

 \[
 H_0 : \mathbb{P} = \mathbb{Q} \quad \quad H_0 : \gamma(\mathbb{P}, \mathbb{Q}) = 0 \\
 \equiv \quad \quad \quad \quad \quad \quad \quad \quad \quad \equiv \\
 H_1 : \mathbb{P} \neq \mathbb{Q} \quad \quad H_1 : \gamma(\mathbb{P}, \mathbb{Q}) > 0
 \]

- **Test statistic**: \(\gamma(\cdot, \cdot) \)

Other applications: Hypothesis testing (independence tests, goodness-of-fit tests), Central limit theorems, Density estimation, Markov chain Monte Carlo etc.
Applications

Two-sample problem:

- Given random samples \(\{X_1, \ldots, X_m\} \) and \(\{Y_1, \ldots, Y_n\} \) drawn i.i.d. from \(P \) and \(Q \), respectively.
- **Determine:** are \(P \) and \(Q \) different?

\[\gamma(P, Q) : \text{distance metric between } P \text{ and } Q. \]

\[H_0 : P = Q \quad \text{or} \quad H_0 : \gamma(P, Q) = 0 \]

\[H_1 : P \neq Q \quad \text{or} \quad H_1 : \gamma(P, Q) > 0 \]

- **Test statistic:** \(\gamma(., .) \)

Other applications: Hypothesis testing (independence tests, goodness-of-fit tests), Central limit theorems, Density estimation, Markov chain Monte Carlo etc.
Let \((M, \rho)\) be a metric space. The maximum mean discrepancy (MMD) between \(P, Q \in \mathcal{P}\) is defined as

\[
\gamma_{\mathcal{F}} (P, Q) = \sup_{f \in \mathcal{F}} \left| \int_M f \, dP - \int_M f \, dQ \right|
\]

where \(\mathcal{F} = \{f : M \to \mathbb{R} | f \in \cap_{P \in \mathcal{P}} L^1(M, P)\}\).

- \(\gamma_{\mathcal{F}}\) is also called the integral probability metric [Müller, 1997].

Motivated from the notion of weak convergence of probability measures on metric spaces.

- \(\gamma_{\mathcal{F}}\) is a pseudo-metric on \(\mathcal{P}\), i.e., \(\gamma_{\mathcal{F}}(P, Q) = 0 \not\Rightarrow P = Q\). \(\mathcal{F}\) determines the metric property of \(\gamma_{\mathcal{F}}\).
Maximum Mean Discrepancy

Let \((M, \rho)\) be a metric space. The maximum mean discrepancy (MMD) between \(P, Q \in \mathcal{P}\) is defined as

\[
\gamma_F(P, Q) = \sup_{f \in F} \left| \int_M f \ dP - \int_M f \ dQ \right|,
\]

where \(F = \{ f : M \to \mathbb{R} | f \in \cap_{P \in \mathcal{P}} L^1(M, P) \} \).

\(\gamma_F\) is also called the integral probability metric [Müller, 1997].

Motivated from the notion of weak convergence of probability measures on metric spaces.

\(\gamma_F\) is a pseudo-metric on \(\mathcal{P}\), i.e., \(\gamma_F(P, Q) = 0 \implies P = Q\). \(F\) determines the metric property of \(\gamma_F\).
Examples

\(\gamma_F \) is a metric on \(\mathcal{P} \) for

- \(\mathcal{F} = C_b(M) \) : definition of weak convergence.
- \(\mathcal{F} = C_{bu}(M) \) : by the Portmanteau theorem.
- \(\mathcal{F} = \{ f : \| f \|_\infty \leq 1 \} \) : total variation distance.
- \(\mathcal{F} = \{ f : \| f \|_L \leq 1 \} \) : Monge-Wasserstein/Rubinstein-Kantorovich metric.
- \(\mathcal{F} = \{ f : \| f \|_\infty + \| f \|_L \leq 1 \} \) : Dudley metric.
- \(\mathcal{F} = \{ 1_{(-\infty,t]} : t \in \mathbb{R}^d \} \) : Kolmogorov distance.
- \(\mathcal{F} = \{ e^{i\langle \omega, \cdot \rangle} : \omega \in \mathbb{R}^d \} \) : maximal difference between the characteristic functions of \(\mathbb{P} \) and \(\mathbb{Q} \).
What if \(\mathcal{F} \) is an RKHS?

Set up: [Gretton et al., 2007]

- \(\mathcal{H} \): reproducing kernel Hilbert space (RKHS).
- \(k \): reproducing kernel; \(k : M \times M \to \mathbb{R} \).
- \(\mathcal{F} \): a unit ball in \(\mathcal{H} \), i.e., \(\mathcal{F} = \{ f : \| f \|_\mathcal{H} \leq 1 \} \).

Theorem

Let

- \(\mathcal{F} = \{ f : \| f \|_\mathcal{H} \leq 1 \} \subset (\mathcal{H}, k) \) defined on a measurable space \(M \).
- \(k \) is measurable and bounded.

Then

\[
\gamma_{\mathcal{F}}(P, Q) = \sup_{f \in \mathcal{F}} \left| \int_M f \, dP - \int_M f \, dQ \right| = \left\| \int_M k \, dP - \int_M k \, dQ \right\|_\mathcal{H},
\]

(2)

where \(\| . \|_\mathcal{H} \) represents the RKHS norm.
What if \mathcal{F} is an RKHS?

Set up: [Gretton et al., 2007]

- \mathcal{H}: reproducing kernel Hilbert space (RKHS).
- k: reproducing kernel; $k: M \times M \rightarrow \mathbb{R}$.
- \mathcal{F}: a unit ball in \mathcal{H}, i.e., $\mathcal{F} = \{ f : \| f \|_\mathcal{H} \leq 1 \}$.

Theorem

Let

- $\mathcal{F} = \{ f : \| f \|_\mathcal{H} \leq 1 \} \subset (\mathcal{H}, k)$ defined on a measurable space M.
- k is measurable and bounded.

Then

$$\gamma_F(\mathbb{P}, \mathbb{Q}) = \sup_{f \in \mathcal{F}} \left| \int_M f \, d\mathbb{P} - \int_M f \, d\mathbb{Q} \right| = \left\| \int_M k \, d\mathbb{P} - \int_M k \, d\mathbb{Q} \right\|_\mathcal{H},$$

(2)

where $\| \cdot \|_\mathcal{H}$ represents the RKHS norm.
Why RKHS?

- Given \mathbb{P} and \mathbb{Q}, computing $\gamma(\mathbb{P}, \mathbb{Q})$ is not straightforward when $\mathcal{F} = C_b(M), \ C_{bu}(M), \ \{\|f\|_L \leq 1\}, \ \{\|f\|_L + \|f\|_\infty \leq 1\}$.

- When $\mathcal{F} = \{f : \|f\|_H \leq 1\}$, then $\gamma(\mathbb{P}, \mathbb{Q})$ is entirely determined by the kernel, k.

- k is measurable and bounded: $\gamma(\hat{\mathbb{P}}, \hat{\mathbb{Q}})$ is a $\sqrt{mn/(m+n)}$-consistent estimator of $\gamma(\mathbb{P}, \mathbb{Q})$ [Gretton et al., 2007].

- $M = \mathbb{R}^d$ and k is translation-invariant: the rate is independent of d.

- Easy to handle structured domains like graphs and strings.
Why RKHS?

- Given \mathbb{P} and \mathbb{Q}, computing $\gamma(\mathbb{P}, \mathbb{Q})$ is not straightforward when $\mathcal{F} = C_b(M), C_{bu}(M), \{\|f\|_L \leq 1\}, \{\|f\|_L + \|f\|_\infty \leq 1\}$.

- When $\mathcal{F} = \{f : \|f\|_\mathcal{H} \leq 1\}$, then $\gamma(\mathbb{P}, \mathbb{Q})$ is entirely determined by the kernel, k.

- k is measurable and bounded: $\gamma(\hat{\mathbb{P}}, \hat{\mathbb{Q}})$ is a $\sqrt{mn/(m + n)}$-consistent estimator of $\gamma(\mathbb{P}, \mathbb{Q})$ [Gretton et al., 2007].

- $M = \mathbb{R}^d$ and k is translation-invariant: the rate is independent of d.

- Easy to handle structured domains like graphs and strings.
Why RKHS?

- Given \mathbb{P} and \mathbb{Q}, computing $\gamma(\mathbb{P}, \mathbb{Q})$ is not straightforward when $\mathcal{F} = C_b(M), C_{bu}(M), \{\|f\|_L \leq 1\}, \{\|f\|_L + \|f\|_\infty \leq 1\}$.

- When $\mathcal{F} = \{f : \|f\|_\mathcal{H} \leq 1\}$, then $\gamma(\mathbb{P}, \mathbb{Q})$ is entirely determined by the kernel, k.

- k is measurable and bounded: $\gamma(\hat{\mathbb{P}}, \hat{\mathbb{Q}})$ is a $\sqrt{mn/(m+n)}$-consistent estimator of $\gamma(\mathbb{P}, \mathbb{Q})$ [Gretton et al., 2007].

- $M = \mathbb{R}^d$ and k is translation-invariant: the rate is independent of d.

- Easy to handle structured domains like graphs and strings.
RKHS Embedding

- $\mathbb{P} \in \mathcal{P}$ is embedded as $\int_{\mathcal{M}} k \, d\mathbb{P} \in \mathcal{H}$,

$$\Pi : \mathcal{P} \to \mathcal{H}, \quad \mathbb{P} \mapsto \int_{\mathcal{M}} k \, d\mathbb{P}.$$ \hfill (3)

- Example: $\mathbb{P} = \delta_x$ (Dirac measure at $x \in \mathcal{M}$) $\mapsto k(., x)$ (kernel function at x).

Question: When is Π injective? In other words, when is $\gamma_\mathcal{F}$ a metric?

For what k, $\gamma_\mathcal{F}(\mathbb{P}, \mathbb{Q}) = 0 \Rightarrow \mathbb{P} = \mathbb{Q}$?

- By choosing the right RKHS, \mathbb{P} and \mathbb{Q} can be distinguished by their mean elements in \mathcal{H}.
RKHS Embedding

- \(P \in \mathcal{P} \) is embedded as \(\int_M k \, dP \in \mathcal{H}, \)

\[
\Pi : \mathcal{P} \to \mathcal{H}, \quad P \mapsto \int_M k \, dP. \tag{3}
\]

- Example: \(P = \delta_x \) (Dirac measure at \(x \in M \)) \(\mapsto \) \(k(.,x) \) (kernel function at \(x \)).

Question: When is \(\Pi \) injective? In other words, when is \(\gamma_F \) a metric?

For what \(k, \gamma_F(P, Q) = 0 \Rightarrow P = Q? \)

- By choosing the right RKHS, \(P \) and \(Q \) can be distinguished by their mean elements in \(\mathcal{H} \).
RKHS Embedding

- $\mathbb{P} \in \mathcal{P}$ is embedded as $\int_M k \, d\mathbb{P} \in \mathcal{H},$

$$\Pi : \mathcal{P} \to \mathcal{H}, \quad \mathbb{P} \mapsto \int_M k \, d\mathbb{P}. \quad (3)$$

- Example: $\mathbb{P} = \delta_x$ (Dirac measure at $x \in \mathbb{M}$) $\mapsto k(., x)$ (kernel function at x).

Question: When is Π injective? In other words, when is $\gamma_{\mathcal{F}}$ a metric?

For what k, $\gamma_{\mathcal{F}}(\mathbb{P}, \mathbb{Q}) = 0 \Rightarrow \mathbb{P} = \mathbb{Q}$?

- By choosing the right RKHS, \mathbb{P} and \mathbb{Q} can be distinguished by their mean elements in \mathcal{H}.

Bharath K. Sriperumbudur (UCSD) Probability Metrics COLT 2008
Characteristic Kernel

Definition

k is characteristic to a set $\mathcal{D} \subset \mathcal{P}$ of probability measures defined on M if

$$\gamma_{\mathcal{F}}(\mathbb{P}, \mathbb{Q}) = 0 \iff \mathbb{P} = \mathbb{Q} \text{ for } \mathbb{P}, \mathbb{Q} \in \mathcal{D} \quad (4)$$

Example

Let $M = \mathbb{R}^d$ and $k(\omega, x) = e^{i\omega^T x}$.

$$\Pi[\mathbb{P}] = \int_M k \, d\mathbb{P} = \int_{\mathbb{R}^d} e^{i\langle \cdot, x \rangle} \, d\mathbb{P}. \quad (5)$$

The notion of characteristic kernel is a generalization of the characteristic function.
Characteristic Kernel

Definition

\(k \) is characteristic to a set \(D \subset \mathcal{P} \) of probability measures defined on \(M \) if

\[
\gamma_F(\mathbb{P}, \mathbb{Q}) = 0 \iff \mathbb{P} = \mathbb{Q} \text{ for } \mathbb{P}, \mathbb{Q} \in D
\] (4)

Example

Let \(M = \mathbb{R}^d \) and \(k(\omega, x) = e^{i\omega^T x} \).

\[
\Pi[\mathbb{P}] = \int_M k \, d\mathbb{P} = \int_{\mathbb{R}^d} e^{i\langle \omega, x \rangle} \, d\mathbb{P}.
\] (5)

The notion of characteristic kernel is a generalization of the characteristic function.
Sufficient Conditions

- Let M be compact. If \mathcal{H} is dense in $C_b(M)$ w.r.t. the L^∞ norm (i.e. k is universal [Steinwart, 2002]), then k is characteristic to \mathcal{P}. [Gretton et al., 2007].
 - Gaussian and Laplacian kernels on any compact subset of \mathbb{R}^d.

- If $\mathcal{H} + \mathbb{R}$ is dense in $L^q(M)$, $q \geq 1$, then k is characteristic to \mathcal{P} [Fukumizu et al., 2008].
 - More general condition than universality.
 - Gaussian and Laplacian kernels on the entire \mathbb{R}^d.

Issues:
- Difficult to check the conditions.
- Universality is an overly restrictive assumption.
Sufficient Conditions

- Let M be compact. If \mathcal{H} is dense in $C_b(M)$ w.r.t. the L^∞ norm (i.e. k is universal [Steinwart, 2002]), then k is characteristic to P. [Gretton et al., 2007].
 - Gaussian and Laplacian kernels on any compact subset of \mathbb{R}^d.

- If $\mathcal{H} + \mathbb{R}$ is dense in $L^q(M)$, $q \geq 1$, then k is characteristic to P [Fukumizu et al., 2008].
 - More general condition than universality.
 - Gaussian and Laplacian kernels on the entire \mathbb{R}^d.

Issues:
- Difficult to check the conditions.
- Universality is an overly restrictive assumption.
Let M be compact. If \mathcal{H} is dense in $C_b(M)$ w.r.t. the L^∞ norm (i.e. k is universal [Steinwart, 2002]), then k is characteristic to \mathcal{P}. [Gretton et al., 2007].

- Gaussian and Laplacian kernels on any compact subset of \mathbb{R}^d.

If $\mathcal{H} + \mathbb{R}$ is dense in $L^q(M)$, $q \geq 1$, then k is characteristic to \mathcal{P} [Fukumizu et al., 2008].

- More general condition than universality.
- Gaussian and Laplacian kernels on the entire \mathbb{R}^d.

Issues:

- Difficult to check the conditions.
- Universality is an overly restrictive assumption.
Background & Notation

Assumption

\(M = \mathbb{R}^d. \ k(x, y) = \psi(x - y) \) where \(\psi \) is a bounded continuous real-valued positive definite function on \(\mathbb{R}^d \).

Theorem (Bochner)

\(\psi \) is positive definite if and only if it is the Fourier transform of a finite nonnegative Borel measure, \(\Lambda \) on \(\mathbb{R}^d \), i.e.,

\[
\psi(x) = \int_{\mathbb{R}^d} e^{-ix^T \omega} \, d\Lambda(\omega), \quad \forall x \in \mathbb{R}^d. \tag{6}
\]

Characteristic function: \(\phi_P(\omega) = \int_{\mathbb{R}^d} e^{i\omega^T x} \, dP(x), \quad \forall \omega \in \mathbb{R}^d. \)

- If \(\psi \in L^1(\mathbb{R}^d) \), then \(d\Lambda = \frac{1}{(2\pi)^{d/2}} \psi \, d\omega. \)
Assumption

\(M = \mathbb{R}^d. \) \(k(x, y) = \psi(x - y) \) where \(\psi \) is a bounded continuous real-valued positive definite function on \(\mathbb{R}^d. \)

Theorem (Bochner)

\(\psi \) is positive definite if and only if it is the Fourier transform of a finite nonnegative Borel measure, \(\Lambda \) on \(\mathbb{R}^d \), i.e.,

\[
\psi(x) = \int_{\mathbb{R}^d} e^{-ix^T \omega} \, d\Lambda(\omega), \quad \forall \, x \in \mathbb{R}^d. \tag{6}
\]

Characteristic function: \(\phi_{\mathbb{P}}(\omega) = \int_{\mathbb{R}^d} e^{i\omega^T x} \, d\mathbb{P}(x), \quad \forall \, \omega \in \mathbb{R}^d. \)

- If \(\psi \in L^1(\mathbb{R}^d) \), then \(d\Lambda = \frac{1}{(2\pi)^{d/2}} \psi \, d\omega. \)
Assumption

$M = \mathbb{R}^d$. $k(x, y) = \psi(x - y)$ where ψ is a bounded continuous real-valued positive definite function on \mathbb{R}^d.

Theorem (Bochner)

ψ is positive definite if and only if it is the Fourier transform of a finite nonnegative Borel measure, Λ on \mathbb{R}^d, i.e.,

$$
\psi(x) = \int_{\mathbb{R}^d} e^{-ix^T \omega} d\Lambda(\omega), \quad \forall x \in \mathbb{R}^d.
$$

(6)

Characteristic function: $\phi_P(\omega) = \int_{\mathbb{R}^d} e^{i\omega^T x} dP(x), \quad \forall \omega \in \mathbb{R}^d$.

- If $\psi \in L^1(\mathbb{R}^d)$, then $d\Lambda = \frac{1}{(2\pi)^{d/2}} \psi d\omega$.
Main Result

Theorem

Let

1. $\mathcal{F} = \{ f : \| f \|_H \leq 1 \} \subset (H, k)$.
2. $k(x, y) = \psi(x - y), \ x, y \in \mathbb{R}^d$; bounded and continuous.

Then, k is characteristic to $\mathcal{P} \iff \text{supp}(\Lambda) = \mathbb{R}^d$.

- If k is such that $\text{supp}(\Lambda) = \mathbb{R}^d$, then $\# \mathcal{P} \neq \mathcal{Q}$ such that $\gamma_{\mathcal{F}}(\mathcal{P}, \mathcal{Q}) = 0$.
- Can we have k with $\text{supp}(\Lambda) \neq \mathbb{R}^d$ such that $\gamma_{\mathcal{F}}(\mathcal{P}, \mathcal{Q}) = 0 \Rightarrow \mathcal{P} = \mathcal{Q}$? The theorem says **NO**.
- Complete characterization of translation-invariant kernels in \mathbb{R}^d.
- **Examples:** Gaussian, Laplacian, B_{2n+1}-splines, Matérn class etc.
Main Result

Theorem

Let

- \(\mathcal{F} = \{ f : \| f \|_\mathcal{H} \leq 1 \} \subset (\mathcal{H}, k) \).
- \(k(x, y) = \psi(x - y) \), \(x, y \in \mathbb{R}^d \); bounded and continuous.

Then, \(k \) is characteristic to \(\mathcal{P} \iff \text{supp}(\Lambda) = \mathbb{R}^d \).

- If \(k \) is such that \(\text{supp}(\Lambda) = \mathbb{R}^d \), then \(\not\exists P \neq Q \) such that \(\gamma_\mathcal{F}(P, Q) = 0 \).
- Can we have \(k \) with \(\text{supp}(\Lambda) \neq \mathbb{R}^d \) such that \(\gamma_\mathcal{F}(P, Q) = 0 \Rightarrow P = Q \)? The theorem says NO.
- Complete characterization of translation-invariant kernels in \(\mathbb{R}^d \).
- Examples: Gaussian, Laplacian, \(B_{2n+1} \)-splines, Matérn class etc.
Main Result

Theorem

Let

- $\mathcal{F} = \{ f : \| f \|_H \leq 1 \} \subset (H, k)$.
- $k(x, y) = \psi(x - y)$, $x, y \in \mathbb{R}^d$; bounded and continuous.

Then, k is characteristic to $\mathcal{P} \iff \text{supp}(\Lambda) = \mathbb{R}^d$.

- If k is such that $\text{supp}(\Lambda) = \mathbb{R}^d$, then $\nexists P \neq Q$ such that $\gamma_{\mathcal{F}}(P, Q) = 0$.
- Can we have k with $\text{supp}(\Lambda) \neq \mathbb{R}^d$ such that $\gamma_{\mathcal{F}}(P, Q) = 0 \Rightarrow P = Q$? The theorem says NO.
- Complete characterization of translation-invariant kernels in \mathbb{R}^d.
- Examples: Gaussian, Laplacian, B_{2n+1}-splines, Matérn class etc.
Characteristic kernel: Examples

- **Gaussian kernel**: \(\psi(x) = e^{-x^2/2\sigma^2} ; \Psi(\omega) = \sigma e^{-\sigma^2 \omega^2 / 2} \).

- **Laplacian kernel**: \(\psi(x) = e^{-\sigma |x|} ; \Psi(\omega) = \sqrt{2/\pi} \frac{\sigma}{\sigma^2 + \omega^2} \).

![Graphs of Gaussian and Laplacian kernels](image-url)
Characteristic kernel: Examples

- B_1-spline kernel: $\psi(x) = (1 - |x|)1_{[-1,1]}(x); \Psi(\omega) = \frac{2\sqrt{2}}{\sqrt{\pi}} \frac{\sin^2(\frac{\omega}{2})}{\omega^2}$.

- $\psi(\omega) = 0$ at $\omega = 2l\pi$, $l \in \mathbb{Z}$; $\text{supp}(\Psi) = \mathbb{R}$.
Non-characteristic kernel: Examples

- **Sinc kernel:** \(\psi(x) = \frac{\sin(\sigma x)}{x} \); \(\Psi(\omega) = \sqrt{\frac{\pi}{2}} \mathbb{1}_{[-\sigma, \sigma]}(\omega) \).

- **Poisson kernel:** \(\psi(x) = \frac{1 - \sigma^2}{\sigma^2 - 2\sigma \cos(x) + 1} \); \(\Psi(\omega) = \sqrt{2\pi} \sum_{j=-\infty}^{\infty} \sigma^{|j|} \delta(\omega - j) \).

- Periodic kernels on \(\mathbb{R}^d \) are not characteristic to \(\mathcal{P} \).
Non-characteristic kernel: Examples

- **Cosine kernel:** \(\psi(x) = \cos(\sigma x); \quad \Psi(\omega) = \sqrt{\frac{\pi}{2}} [\delta(\omega - \sigma) + \delta(\omega + \sigma)]. \)

- **Dirichlet kernel:** \(\psi(x) = \frac{\sin(nx+0.5x)}{\sin(0.5x)}; \quad \Psi(\omega) = \sqrt{2\pi} \sum_{j=-n}^{n} \delta(\omega - j). \)
Lemma

Let

\[\mathcal{F} = \{ f : \| f \|_\mathcal{H} \leq 1 \} \subset (\mathcal{H}, k). \]

\[k(x, y) = \psi(x - y), \ x, y \in \mathbb{R}^d; \text{bounded and continuous}. \]

\[\phi_\mathbb{P}, \phi_\mathbb{Q} : \text{characteristic functions of } \mathbb{P} \text{ and } \mathbb{Q}. \]
Fourier Representation of MMD

Lemma

Let

- $\mathcal{F} = \{f : \|f\|_H \leq 1\} \subset (H, k)$.
- $k(x, y) = \psi(x - y), x, y \in \mathbb{R}^d$; \textit{bounded and continuous}.
- $\phi_P, \phi_Q : \text{characteristic functions of } P \text{ and } Q$.

Then

$$\int_{\mathbb{R}^d} k(., x) \, dP(x) = \mathcal{F}^{-1} \left[\phi_P \Lambda \right], \quad (7)$$
Fourier Representation of MMD

Lemma

Let

- \(\mathcal{F} = \{ f : \| f \|_{\mathcal{H}} \leq 1 \} \subset (\mathcal{H}, k) \).
- \(k(x, y) = \psi(x - y), \ x, y \in \mathbb{R}^d \); bounded and continuous.
- \(\phi_P, \phi_Q : \text{characteristic functions of } P \text{ and } Q \).

Then

\[
\int_{\mathbb{R}^d} k(., x) \ dP(x) = \mathcal{F}^{-1} \left[\overline{\phi_P} \Lambda \right], \tag{7}
\]

and

\[
\gamma_{\mathcal{F}}(P, Q) = \| \mathcal{F}^{-1}[(\overline{\phi_P} - \overline{\phi_Q}) \Lambda] \|_{\mathcal{H}}, \tag{8}
\]

where \(- \) represents complex conjugation, \(\mathcal{F}^{-1} \) represents the inverse Fourier transform.
Proof

Sufficiency: Assume $\psi \in L^1(\mathbb{R}^d)$.

- Λ is absolutely continuous w.r.t. the Lebesgue measure and has density, Ψ.
- $\mathcal{F}[\psi] = \psi$
- $\gamma_{\mathcal{F}}(P, Q) = 0 \Rightarrow (\phi_P - \phi_Q)\psi = 0$.
- If $\text{supp}(\Lambda) = \mathbb{R}^d$, then $\psi(\omega) > 0$ a.e. $\Rightarrow \phi_P = \phi_Q$ a.e. $\Rightarrow P = Q$.

$\psi \notin L^1(\mathbb{R}^d)$ can be addressed using distribution theory.

Necessity:

- We need to show that k is characteristic $\Rightarrow \text{supp}(\Lambda) = \mathbb{R}^d$.
- Equivalent to showing that $\text{supp}(\Lambda) \subsetneq \mathbb{R}^d \Rightarrow k$ is not characteristic.
- We show that for any k with $\text{supp}(\Lambda) \subsetneq \mathbb{R}^d$, $\exists P \neq Q$ such that $\gamma_{\mathcal{F}}(P, Q) = 0$.
Proof

Sufficiency: Assume $\psi \in L^1(\mathbb{R}^d)$.

- Λ is absolutely continuous w.r.t. the Lebesgue measure and has density, Ψ.
- $\mathbb{F}[\psi] = \psi$
- $\gamma_{\mathbb{F}}(P, Q) = 0 \Rightarrow (\phi_P - \phi_Q)\psi = 0$.
- If $\text{supp}(\Lambda) = \mathbb{R}^d$, then $\psi(\omega) > 0$ a.e. $\Rightarrow \phi_P = \phi_Q$ a.e. $\Rightarrow P = Q$.

$\psi \notin L^1(\mathbb{R}^d)$ can be addressed using distribution theory.

Necessity:

- We need to show that k is characteristic $\Rightarrow \text{supp}(\Lambda) = \mathbb{R}^d$.
- Equivalent to showing that $\text{supp}(\Lambda) \subsetneq \mathbb{R}^d \Rightarrow k$ is not characteristic.
- We show that for any k with $\text{supp}(\Lambda) \subsetneq \mathbb{R}^d$, $\exists P \neq Q$ such that $\gamma_{\mathbb{F}}(P, Q) = 0$.
Proof Idea: Necessity

Lemma

Let

- $\mathcal{F} = \{ f : \| f \|_\mathcal{H} \leq 1 \} \subset (\mathcal{H}, k)$.
- $k(x, y) = \psi(x - y), \ x, y \in \mathbb{R}^d$; bounded and continuous.
- $\mathcal{D} = \{ \mathbb{P} : \phi_\mathbb{P} \in L^1(\mathbb{R}^d) \cup L^2(\mathbb{R}^d) \} \subset \mathcal{P}$.

Then for any $Q \in \mathcal{D}$, $\exists \mathbb{P} \neq Q, \mathbb{P} \in \mathcal{D}$ given by

$$p = q + \mathcal{F}^{-1}[\theta]$$

(9)

such that $\gamma_{\mathcal{F}}(\mathbb{P}, Q) = 0$ if and only if $\exists \theta : \mathbb{R}^d \to \mathbb{C}, \theta \neq 0$ that satisfies:

(i) $\theta \in (L^1(\mathbb{R}^d) \cup L^2(\mathbb{R}^d)) \cap C_b(\mathbb{R}^d)$ is conjugate symmetric,
(ii) $\mathcal{F}^{-1}[\theta] \in L^1(\mathbb{R}^d) \cap (L^2(\mathbb{R}^d) \cup C_b(\mathbb{R}^d))$,
(iii) $\theta \Lambda = 0$,
(iv) $\theta(0) = 0$,
(v) $\inf_{x \in \mathbb{R}^d} \{ \mathcal{F}^{-1}[\theta](x) + q(x) \} \geq 0$.
Proof Idea: Necessity

Lemma

Let

- \(\mathcal{F} = \{ f : \| f \|_\mathcal{H} \leq 1 \} \subset (\mathcal{H}, k) \).
- \(k(x, y) = \psi(x - y) \), \(x, y \in \mathbb{R}^d \); bounded and continuous.
- \(\mathcal{D} = \{ P : \phi_P \in L^1(\mathbb{R}^d) \cup L^2(\mathbb{R}^d) \} \subset \mathcal{P} \).

Then for any \(Q \in \mathcal{D} \), \(\exists P \neq Q, P \in \mathcal{D} \) given by

\[
p = q + \mathcal{F}^{-1}[\theta]
\]

such that \(\gamma_{\mathcal{F}}(P, Q) = 0 \) if and only if \(\exists \theta : \mathbb{R}^d \to \mathbb{C}, \theta \neq 0 \) that satisfies:

(i) \(\theta \in (L^1(\mathbb{R}^d) \cup L^2(\mathbb{R}^d)) \cap C_b(\mathbb{R}^d) \) is conjugate symmetric,
(ii) \(\mathcal{F}^{-1}[\theta] \in L^1(\mathbb{R}^d) \cap (L^2(\mathbb{R}^d) \cup C_b(\mathbb{R}^d)) \),
(iii) \(\theta \Lambda = 0 \),
(iv) \(\theta(0) = 0 \),
(v) \(\inf_{x \in \mathbb{R}^d} \{ \mathcal{F}^{-1}[\theta](x) + q(x) \} \geq 0 \).
Proof Idea: Necessity

Lemma

Let

- \(\mathcal{F} = \{ f : \| f \|_\mathcal{H} \leq 1 \} \subset (\mathcal{H}, k) \).
- \(k(x, y) = \psi(x - y), \ x, y \in \mathbb{R}^d \); bounded and continuous.
- \(\mathcal{D} = \{ \mathbb{P} : \phi_\mathbb{P} \in L^1(\mathbb{R}^d) \cup L^2(\mathbb{R}^d) \} \subset \mathcal{P} \).

Then for any \(Q \in \mathcal{D} \), \(\exists \mathbb{P} \neq Q, \mathbb{P} \in \mathcal{D} \) given by

\[
p = q + \mathcal{F}^{-1}[\theta]
\]

such that \(\gamma_{\mathcal{F}}(\mathbb{P}, Q) = 0 \) if and only if \(\exists \theta : \mathbb{R}^d \to \mathbb{C}, \theta \neq 0 \) that satisfies:

(i) \(\theta \in (L^1(\mathbb{R}^d) \cup L^2(\mathbb{R}^d)) \cap C_b(\mathbb{R}^d) \) is conjugate symmetric,
(ii) \(\mathcal{F}^{-1}[\theta] \in L^1(\mathbb{R}^d) \cap (L^2(\mathbb{R}^d) \cup C_b(\mathbb{R}^d)) \),
(iii) \(\theta \Lambda = 0 \),
(iv) \(\theta(0) = 0 \),
(v) \(\inf_{x \in \mathbb{R}^d} \{ \mathcal{F}^{-1}[\theta](x) + q(x) \} \geq 0 \).
Proof Idea of Necessity: Example

\[\psi(x) = \sqrt{\frac{2}{\pi}} \frac{\sin(2\pi x)}{x}; \quad \Psi(\omega) = 1_{[-2\pi, 2\pi]}(\omega). \]

\[\theta(\omega) = \frac{1}{100i} \left[1_{[-2\pi, 2\pi]}(\omega)(2\pi - |\omega|) \right] * \left[\delta(\omega - 4\pi) - \delta(\omega + 4\pi) \right]; \]

\[\mathcal{F}^{-1}[\theta](x) = \frac{\sqrt{2}}{50\sqrt{\pi}} \sin(4\pi x) \frac{\sin^2(\pi x)}{x^2}. \]
Example: cntd.

- $q(x) = \frac{1}{\pi(1+x^2)}$; $\phi_Q(\omega) = \frac{1}{\sqrt{2\pi}} e^{-|\omega|}$.

- $p(x) = q(x) + \mathcal{F}^{-1}[\theta](x)$; $\phi_P(\omega) = \phi_Q(\omega) + \theta(\omega)$.
Useful Result

Corollary

Let

- \(\mathcal{F} = \{ f : \| f \|_\mathcal{H} \leq 1 \} \subset (\mathcal{H}, k) \)
- \(k(x, y) = \psi(x - y), \ x, y \in \mathbb{R}^d; \) bounded and continuous.
- \(\text{supp}(\psi) \) is compact.

Then \(k \) is characteristic to \(\mathcal{P} \).

- All compactly supported continuous kernels are characteristic to \(\mathcal{P} \).
- Computationally advantageous in practice.

So far, \(\text{supp}(\Lambda) = \mathbb{R}^d \Leftrightarrow k \) is characteristic to \(\mathcal{P} \).

- Can \(k \) with \(\text{supp}(\Lambda) \subsetneq \mathbb{R}^d \) be characteristic to some \(\mathcal{D} \subsetneq \mathcal{P} \)?
Useful Result

Corollary

Let

\- \(\mathcal{F} = \{ f : \| f \|_\mathcal{H} \leq 1 \} \subset (\mathcal{H}, k) \)
\- \(k(x, y) = \psi(x - y), \ x, y \in \mathbb{R}^d; \text{ bounded and continuous.} \)
\- \(\text{supp}(\psi) \text{ is compact.} \)

Then \(k \) is characteristic to \(\mathcal{P} \).

\- All compactly supported continuous kernels are characteristic to \(\mathcal{P} \).
\- Computationally advantageous in practice.

So far, \(\text{supp}(\Lambda) = \mathbb{R}^d \iff k \) is characteristic to \(\mathcal{P} \).

\- Can \(k \) with \(\text{supp}(\Lambda) \subsetneq \mathbb{R}^d \) be characteristic to some \(\mathcal{D} \subsetneq \mathcal{P} \)?
\[\Sigma := \text{supp}(\Lambda) \]
Question: How good is the “characteristic property” in the finite sample setting?
Dissimilar Distributions with Small MMD: Example

Question: How good is the “characteristic property” in the finite sample setting?

\[p(x) = q(x) + \alpha q(x) \sin(\nu \pi x). \]

- \(q = \mathcal{U}[-1, 1] \)

 \(\nu = 0 \quad \nu = 2 \quad \nu = 7.5 \)

- \(q = \mathcal{N}(0, 2) \)
Example: cntd.

$$\gamma_{\mathcal{F}}(\hat{P}, \hat{Q}) \text{ vs. } \nu:$$

Large ν: $\gamma_{\mathcal{F}}(\hat{P}, \hat{Q})$ becomes indistinguishable from zero though $\gamma_{\mathcal{F}}(P, Q) > 0.$
Summary

- Maximum mean discrepancy, $\gamma_{\mathcal{F}}(\mathbb{P}, \mathbb{Q}) = \sup_{f \in \mathcal{F}} \left| \int_M f \, d\mathbb{P} - \int_M f \, d\mathbb{Q} \right|$.

- When \mathcal{F} is a unit ball in an RKHS (\mathcal{H}, k), then $\gamma_{\mathcal{F}}$ is entirely determined by k.

- When $M = \mathbb{R}^d$, $\gamma_{\mathcal{F}}$ is a metric on \mathcal{P} if and only if the Fourier spectrum of a translation-invariant kernel has the entire domain as its support.

- In the finite sample setting, characteristic kernels may have difficulty in distinguishing certain distributions.
Extensions & Open Questions

Extensions:

- M is a compact subset of \mathbb{R}^d but with periodic boundary conditions, e.g. Torus, \mathbb{T}^d.

- M: locally compact Abelian group, compact non-abelian group, semigroup.

- Relation of RKHS based γ_F to probability metrics induced by other F.

- Role of the speed of decay of the spectrum of k on γ_F.

- Dependence of γ_F on the kernel parameter.
Thank You
Kernel measures of conditional dependence.

A kernel method for the two sample problem.

Integral probability metrics and their generating classes of functions.

On the influence of the kernel on the consistency of support vector machines.