14. Differentiation

Definition. Let D be a subset of \mathbb{R} containing a neighborhood of a, that is, an open interval $(a-r, a+r)$, with $r > 0$. We say that a function $f : D \to \mathbb{R}$ is differentiable at a if the following limit exists:

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$$

The real number $f'(a)$ is called the derivative of f at a. The quotient

$$\frac{f(x) - f(a)}{x - a}$$

is referred to as the difference quotient. Equivalently, setting $x = a + \Delta x$, one gets

$$\lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x} = f'(a).$$

Example 1. Let $f(x) = x^2$ on \mathbb{R}. Show that f is differentiable at each point $a \in \mathbb{R}$.

Solution We have:

$$\frac{f(x) - f(a)}{x - a} = \frac{x^2 - a^2}{x - a} = x + a$$

Therefore,

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = 2a.$$

In other words $f'(a) = 2a$, for all a in \mathbb{R}.

Example 2. Let $f(x) = \sqrt{x}$ on the open interval $I = (0, \infty)$. Prove that f is differentiable at every point of I.

Solution For every $a \in I$, we have:

$$\frac{f(x) - f(a)}{x - a} = \frac{\sqrt{x} - \sqrt{a}}{x - a} = \frac{(\sqrt{x} - \sqrt{a})(\sqrt{x} + \sqrt{a})}{(x-a)(\sqrt{x} + \sqrt{a})} = \frac{x-a}{(x-a)(\sqrt{x} + \sqrt{a})} = \frac{1}{\sqrt{x} + \sqrt{a}}$$
It follows
\[\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \frac{1}{2\sqrt{a}} \]
Thus, \(f'(a) = \frac{1}{2\sqrt{a}} \), for all \(a \) in \(\mathbb{R} \).

Remark. Assume that the following right-hand and left-hand limits exist.
\[\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} = f'(a^+), \quad \lim_{x \to a^-} \frac{f(x) - f(a)}{x - a} = f'(a^-). \]
The function \(f \) is differentiable at \(a \) if and only if \(f'(a^+) \) and \(f'(a^-) \) exist and are the same. Then, \(f'(a) = f'(a^-) = f'(a^+) \).

Example 3. Let \(f(x) = |x| \) defined on \(\mathbb{R} \). Is \(f \) differentiable at zero?

Solution We have:
\[\lim_{x \to 0^+} \frac{|x|}{x} = 1 \quad \text{and} \quad \lim_{x \to 0^-} \frac{|x|}{x} = -1. \]
Since the right-hand and the left-hand limits of \(f \) at zero are different, \(f \) is not differentiable at zero.

Example 4. Let \(f(x) = x \sin \frac{1}{x} \) for \(x \neq 0 \) and \(f(0) = 0 \). Prove that \(f \) is not differentiable at zero.

Solution. We have:
\[\lim_{x \to 0} \frac{x \sin \frac{1}{x}}{x} = \lim_{x \to 0} \frac{\sin \frac{1}{x}}{x}. \]
The limit does not exist. Hence \(f \) is not differentiable at zero.

Local extremum points

Definition. Let \(f : I \to \mathbb{R} \) be a function on \(I \), where \(I \) is an open interval.
- A point \(c \) in \(I \) is a local maximum of \(f \) if \(f(c) \geq f(x) \) for \(x \approx c \).
- A point \(c \) in \(I \) is a local minimum of \(f \) if \(f(c) \leq f(x) \) for \(x \approx c \).

Theorem. Let \(f \) be a differentiable function on an open interval \(I \). If \(a \) is a local extremum point then \(f'(a) = 0 \).

Remark. The converse of the previous theorem is false. For example, if \(f(x) = x^3 \) then \(f'(0) = 0 \) but \(a = 0 \) is not a local extremum point.