Let f be a function defined on an interval $I = [a, b]$ and let
\[\mathcal{P} = \{a = y_0 < y_1 < \cdots < y_n = b\} \]
be a partition of $[a, b]$.

- The **mesh** of \mathcal{P} is the maximum length of the intervals $[y_{k-1}, y_k]$.
- The **upper Riemann sum** of f with respect to \mathcal{P} is
 \[\overline{S}(\mathcal{P}) = \sum_{i=1}^{n} M_k(y_k - y_{k-1}) \quad \text{where} \quad M_k = \sup\{f(x) : y_{k-1} \leq x \leq y_k\}. \]
- The **lower Riemann sum** of f with respect to \mathcal{P} is
 \[\underline{S}(\mathcal{P}) = \sum_{i=1}^{n} m_k(y_k - y_{k-1}) \quad \text{where} \quad m_k = \inf\{f(x) : y_{k-1} \leq x \leq y_k\}. \]

As the mesh of \mathcal{P} tends to zero, we expect both Riemann sums to tend to a fixed number ℓ. If this happens, then f is Riemann integrable on $[a, b]$ and
\[\int_{a}^{b} f(x) \, dx = \ell = \lim_{\text{mesh} \to 0} \underline{S}(\mathcal{P}) = \lim_{\text{mesh} \to 0} \overline{S}(\mathcal{P}). \]

Note: If we partition $[a, b]$ into n intervals of equal length $\frac{b-a}{n}$ then for each value of $n \in \mathbb{N}$, the mesh of the corresponding partition \mathcal{P}_n is
\[\text{mesh}(\mathcal{P}_n) = \frac{b-a}{n}, \]
which tends to zero as $n \to \infty$.

Theorem

1. If f is continuous on $[a, b]$ then it is Riemann integrable.
2. Non-bounded functions on $[a, b]$ are not Riemann integrable.
3. Any linear combination of Riemann integrable functions on $[a, b]$ is also Riemann integrable.