The Box-Cox Transformation and ARIMA Model Fitting
Outline

1. §4.3: Variance Stabilizing Transformations
2. §6.1: ARIMA Model Identification
3. Homework 3b
Mathematical Formulation

Suppose the variance of a time series Z_t satisfies

$$\text{var}(Z_t) = cf(\mu_t)$$

We wish to find a transformation such that $T(\cdot)$, such that $\text{var}[T(Z_t)]$ is constant.

A first-order Taylor series of $T(Z_t)$ about μ_t is

$$T(Z_t) \approx T(\mu_t) + T'(\mu_t)(Z_t - \mu_t)$$

Now $\text{var}[T(Z_t)]$ is approximated as

$$\text{var}[T(Z_t)] \approx \left[T'(\mu_t)\right]^2 \text{var}(Z_t) = c \left[T'(\mu_t)\right]^2 f(\mu_t)$$

Therefore $T(\cdot)$ is chosen such that

$$T'(\mu_t) = \frac{1}{\sqrt{f(\mu_t)}}$$

which implies

$$T(\mu_t) = \int \frac{1}{\sqrt{f(\mu_t)}} d\mu_t$$
Mathematical Formulation

Suppose the variance of a time series Z_t satisfies

$$\text{var}(Z_t) = cf(\mu_t)$$

We wish to find a transformation such that $T(\cdot)$, such that $\text{var}[T(Z_t)]$ is constant.

A first-order Taylor series of $T(Z_t)$ about μ_t is

$$T(Z_t) \approx T(\mu_t) + T'(\mu_t)(Z_t - \mu_t)$$

Now $\text{var}[T(Z_t)]$ is approximated as

$$\text{var}[T(Z_t)] \approx [T'(\mu_t)]^2 \text{var}(Z_t) = c [T'(\mu_t)]^2 f(\mu_t)$$

Therefore $T(\cdot)$ is chosen such that

$$T'(\mu_t) = \frac{1}{\sqrt{f(\mu_t)}}$$

which implies

$$T(\mu_t) = \int \frac{1}{\sqrt{f(\mu_t)}} d\mu_t$$
Mathematical Formulation

Suppose the variance of a time series Z_t satisfies

$\text{var}(Z_t) = cf(\mu_t)$

We wish to find a transformation such that, $T(\cdot)$, such that $\text{var}[T(Z_t)]$ is constant. A first-order Taylor series of $T(Z_t)$ about μ_t is

$$T(Z_t) \approx T(\mu_t) + T'(\mu_t)(Z_t - \mu_t)$$

Now $\text{var}[T(Z_t)]$ is approximated as

$$\text{var}[T(Z_t)] \approx [T'(\mu_t)]^2 \text{var}(Z_t) = c [T'(\mu_t)]^2 f(\mu_t)$$

Therefore $T(\cdot)$ is chosen such that

$$T'(\mu_t) = \frac{1}{\sqrt{f(\mu_t)}}$$

which implies

$$T(\mu_t) = \int \frac{1}{\sqrt{f(\mu_t)}} d\mu_t$$
Mathematical Formulation

Suppose the variance of a time series Z_t satisfies

$$\text{var}(Z_t) = cf(\mu_t)$$

We wish to find a transformation such that $T(\cdot)$, such that $\text{var}[T(Z_t)]$ is constant. A first-order Taylor series of $T(Z_t)$ about μ_t is

$$T(Z_t) \approx T(\mu_t) + T'(\mu_t)(Z_t - \mu_t)$$

Now $\text{var}[T(Z_t)]$ is approximated as

$$\text{var}[T(Z_t)] \approx [T'(\mu_t)]^2 \text{var}(Z_t) = c [T'(\mu_t)]^2 f(\mu_t)$$

Therefore $T(\cdot)$ is chosen such that

$$T'(\mu_t) = \frac{1}{\sqrt{f(\mu_t)}}$$

which implies

$$T(\mu_t) = \int \frac{1}{\sqrt{f(\mu_t)}} d\mu_t$$
Mathematical Formulation

Suppose the variance of a time series Z_t satisfies

$$\text{var}(Z_t) = cf(\mu_t)$$

We wish to find a transformation such that, $T(\cdot)$, such that $\text{var}[T(Z_t)]$ is constant.

A first-order Taylor series of $T(Z_t)$ about μ_t is

$$T(Z_t) \approx T(\mu_t) + T'(\mu_t)(Z_t - \mu_t)$$

Now $\text{var}[T(Z_t)]$ is approximated as

$$\text{var}[T(Z_t)] \approx [T'(\mu_t)]^2 \text{var}(Z_t) = c [T'(\mu_t)]^2 f(\mu_t)$$

Therefore $T(\cdot)$ is chosen such that

$$T'(\mu_t) = \frac{1}{\sqrt{f(\mu_t)}}$$

which implies

$$T(\mu_t) = \int \frac{1}{\sqrt{f(\mu_t)}} d\mu_t$$
Mathematical Formulation

Suppose the variance of a time series Z_t satisfies

$$\text{var}(Z_t) = cf(\mu_t)$$

We wish to find a transformation such that, $T(\cdot)$, such that $\text{var}[T(Z_t)]$ is constant. A first-order Taylor series of $T(Z_t)$ about μ_t is

$$T(Z_t) \approx T(\mu_t) + T'(\mu_t)(Z_t - \mu_t)$$

Now $\text{var}[T(Z_t)]$ is approximated as

$$\text{var}[T(Z_t)] \approx [T'(\mu_t)]^2 \text{var}(Z_t) = c [T'(\mu_t)]^2 f(\mu_t)$$

Therefore $T(\cdot)$ is chosen such that

$$T'(\mu_t) = \frac{1}{\sqrt{f(\mu_t)}}$$

which implies

$$T(\mu_t) = \int \frac{1}{\sqrt{f(\mu_t)}} d\mu_t$$
Box-Cox Transformation

Transforming the time series can suppress large fluctuations. The most standard transformation is the log transformation where the new series y_t is given by

$$y_t = \log x_t$$

An alternative to the log transformation is the Box-Cox transformation:

$$y_t = \begin{cases}
 (x_t^\lambda - 1)/\lambda, & \lambda \neq 0 \\
 \ln x_t, & \lambda = 0
\end{cases}$$

Many other transformations are suggested here.
Box-Cox Transformation

Transforming the time series can suppress large fluctuations. The most standard transformation is the log transformation where the new series y_t is given by

$$y_t = \log x_t$$

An alternative to the log transformation is the Box-Cox transformation:

$$y_t = \begin{cases}
(x_t^\lambda - 1)/\lambda, & \lambda \neq 0 \\
\ln x_t, & \lambda = 0
\end{cases}$$

Many other transformations are suggested here.
Box-Cox Transformation

Transforming the time series can suppress large fluctuations. The most standard transformation is the log transformation where the new series \(y_t \) is given by

\[
y_t = \log x_t
\]

An alternative to the log transformation is the Box-Cox transformation:

\[
y_t = \begin{cases}
(x_t^\lambda - 1)/\lambda, & \lambda \neq 0 \\
\ln x_t, & \lambda = 0
\end{cases}
\]

Many other transformations are suggested here.
Box-Cox in R

```r
> library(MASS)
> library(forecast)
> x<-rnorm(100)^2
> ts.plot(x)
> truehist(x)
```

![Time series plot](image1)

![Histogram](image2)
Box-Cox in R (II)

```r
> bc <- boxcox(x ~ 1)
> lam <- bc$x[which.max(bc$y)]
> lam
[1] 0.2222222
> truehist(BoxCox(x, lam))
```

![Histogram of BoxCox transformation with lambda = 0.2222222]

```r
> ts.plot(BoxCox(x, lam))
```

![Time series plot of BoxCox transformation with lambda = 0.2222222]

Arthur Berg
The Box-Cox Transformation and ARIMA Model Fitting

Outline

1. §4.3: Variance Stabilizing Transformations
2. §6.1: ARIMA Model Identification
3. Homework 3b
Some Very Old Data

1877 A.D.

\[x(t + \tau) = \exp \left\{ \int_t^{t+\tau} B(t')dt'' \right\} x(t) + \int_t^{t+\tau} \exp \left\{ \int_t^{t+\tau} B(t')dt'' \right\} \varepsilon(t')dt' \]
Glacial Varves

variation in thickness \propto amount deposited
The transformation $\nabla \log(\text{varve})$ appears appropriate although fractional differencing may be in order. Let's take a closer look at $\nabla \log(\text{varve})$.

```
> varve = scan("mydata/varve.dat")
> varve2=diff(log(varve))
> ts.plot(varve2)
> acf(varve2,lwd=5)
> pacf(varve2,lwd=5)
```
The transformation $\nabla \log(\text{varve})$ appears appropriate although fractional differencing may be in order.

Let’s take a closer look at $\nabla \log(\text{varve})$.

> varve = scan("mydata/varve.dat")
> varve2=diff(log(varve))
> ts.plot(varve2)
> acf(varve2,lwd=5)
> pacf(varve2,lwd=5)
The transformation $\nabla \log(\text{varve})$ appears appropriate although fractional differencing may be in order.

Let’s take a closer look at $\nabla \log(\text{varve})$.

```r
> varve = scan("mydata/varve.dat")
> varve2 = diff(log(varve))
> ts.plot(varve2)
> acf(varve2, lwd=5)
> pacf(varve2, lwd=5)
```
Diagnostics of ARIMA(0,1,1) on Logged Varve Data

> (varve.ma = arima(log(varve), order = c(0, 1, 1)))

Call:
arima(x = log(varve), order = c(0, 1, 1))

Coefficients:
 ma1
-0.7705

s.e. 0.0341

sigma^2 estimated as 0.2353:
log likelihood = -440.72, aic = 885.44

> tsdiag(varve.ma)
Diagnostics of ARIMA(0,1,1) on Logged Varve Data

> (varve.ma = arima(log(varve), order = c(0, 1, 1)))

Call:
arima(x = log(varve), order = c(0, 1, 1))

Coefficients:
 ma1
 -0.7705
 s.e. 0.0341

sigma^2 estimated as 0.2353:
log likelihood = -440.72, aic = 885.44

> tsdiag(varve.ma)
The Box-Cox Transformation and ARIMA Model Fitting
Fitting ARIMA(1,1,1) to Logged Varve Data

> pacf(varve.ma$resid, lwd=5)

> (varve.arma = arima(log(varve), order = c(1, 1, 1)))

Call:
arima(x = log(varve), order = c(1, 1, 1))

Coefficients:
ar1 ma1
0.2330 -0.8858
s.e. 0.0518 0.0292

sigma^2 est as 0.2284: log likelihood = -431.44, aic = 868.88
Fitting ARIMA(1,1,1) to Logged Varve Data

> pacf(varve.ma$resid, lwd=5)

> (varve.arma = arima(log(varve), order = c(1, 1, 1)))

Call:
 arima(x = log(varve), order = c(1, 1, 1))

Coefficients:
 ar1 ma1
 0.2330 -0.8858

s.e. 0.0518 0.0292

sigma^2 est as 0.2284: log likelihood = -431.44, aic = 868.88
Varve ARIMA(1,1,1) Diagnostics

> tsdiag(varve.arma)
Watch Out for Overfitting!
Outline

1. §4.3: Variance Stabilizing Transformations
2. §6.1: ARIMA Model Identification
3. Homework 3b
Read §5.1 and §5.2 of the textbook.
Do exercise #4.5 on page 87 of the text.