1. (10 points) Let \(\Omega \in L^1(S^{d-1}) \) have mean zero. Prove that, if the operator \(T_\Omega \) defined by:
\[
T_\Omega f(x) := \text{p.v.} \int_{\mathbb{R}^d} \frac{\Omega(y/|y|)}{|y|^d} f(x - y) \, dy, \quad f \in \mathcal{S}(\mathbb{R}^d),
\]
maps \(L^p \) to \(L^q \) boundedly, then necessarily \(p = q \).

2. (10 points) Assume that \(T \) is a linear operator acting on measurable function in \(\mathbb{R}^d \) with the property that, if \(f \) is supported on a cube \(Q \), then \(Tf \) is supported on a fixed multiple of the cube, say \(NQ \). Prove that, if \(T \) is strong type \((p, p)\) for some \(p \), then \(T \) is also weak type \((1, 1)\).