Chapter 4

Entropy and mixing of affine automorphisms

In this chapter, we shall compute the topological entropy of affine automorphisms of a compact nilmanifold $M = G/\Gamma$. We will also provide a criterion for such automorphisms to be mixing. In particular, it will be established that for a linear automorphism $T \in \text{Aut}(M)$, T is K-mixing if and only if it is weakly mixing. The arguments in this chapter will follow a mixture of [ELW18, Ch. 2 & Ch. 6] and [Par69a].

4.1 Basics of entropy theory

We start by briefly recalling the definitions of topological and measure-theoretic entropies.

Let (X, T) be a topological dynamical system, where X is a compact metric space with metric d. Then for every $n \in \mathbb{N}$, there is a natural embedding $X \rightarrow X^n$ by $\iota_N(x) = (x, Tx, \cdots, T^{N-1}x)$, which sends a point to the segment of length n at the beginning of its T-orbit. Denote by $d_N = \iota_N^*d^N$ the pull back of the l^∞-metric $d^N(x, y) = \max_{n=0}^{N-1} d(x_n, y_n)$ on X^n, then

$$d_N(x, y) = \max_{n=0}^{N-1} d(T^nx, T^ny), \forall x, y \in X. \quad (4.1)$$

For all compact subsets $Y \subseteq X$, denote

$$S_{N,\epsilon}(Y) = \text{smallest number of } \epsilon \text{-balls in } d_N \text{ needed to cover } Y. \quad (4.2)$$

In the sequel, we will denote respectively by $B_\epsilon(x)$ and $B_{N,\epsilon}(x)$ the open balls centered at x of radius ϵ according to d and d_N. The set $B_{N,\epsilon}(x)$ is called a Bowen ball.
Definition 4.1.1. The topological entropy of a topological dynamical system \((X, T) \) on a compact metric space is

\[
h_{\text{top}}(T) = \lim_{\epsilon \to 0} \lim_{N \to \infty} \frac{1}{N} \log S_{N, \epsilon}(X).
\]

This is well-defined, though possibly has an infinite value, because of the facts listed below. First, for a given \(\epsilon \), \(\log S_{N, \epsilon}(X) \) is a subadditive sequence:

\[
\log S_{N + M, \epsilon}(X) \leq \log S_{N, \epsilon}(X) + \log S_{M, \epsilon}(X).
\]

Moreover, \(S_{N, \epsilon}(X) \) is clearly increasing as \(\epsilon \to 0 \). For more details, see [ELW18, Ch. 6].

One may generalize this notion to non-compact spaces.

Definition 4.1.2. Suppose \((X, d) \) is a locally compact \(\sigma \)-compact metric space, and \(T : X \to X \) be a map that is uniformly continuous with respect to \(d \), then the topological entropy of \((X, T, d) \) is

\[
h_{\text{top}}(T) = \sup_{\text{compact } Y \subseteq X} \lim_{\epsilon \to 0} \lim_{N \to \infty} \frac{1}{N} \log S_{N, \epsilon}(Y).
\]

Here we keep the notations (4.1) and (4.2). The definition again makes sense for the same reasons as before. Furthermore, because \(S_{N, \epsilon}(Y) \) is increasing as \(Y \) enlarges, instead of \(\sup_{\text{compact } Y \subseteq X} \) one may write \(\lim_{Y_k \to X} \) where \(\{Y_k\} \) is an increasing sequence of compact subsets such that \(\bigcup_{k=1}^{\infty} Y_k = X \).

Definitions 4.1.1 and 4.1.2 are related by:

Lemma 4.1.3. Suppose a discrete group \(\Gamma \) acts freely and properly\(^1\) on a metric space \((X, d) \) from the right by isometries. Let \((X', d') \) be the quotient space \(X / \Gamma \) equipped with the quotient metric \(d' \), so that the projection \(\pi : X \to X' \) is locally an isometry\(^2\).

Assume in addition that \(X' \) is compact, and \(T' \circ \pi = \pi \circ T \) for uniformly continuous maps \(T : X \to X, T' : X' \to X' \). Then \(h_{\text{top}}(T) = h_{\text{top}}(T') \).

Proof. For every \(x \in X \), there is a radius \(\delta_x > 0 \) such that \(\pi \) is an isometry between \(B_{\delta_x}(x) \) and its image \(\pi(B_{\delta_x}(x)) \). Because \(\Gamma \) acts isometrically, \(\delta_x = \delta_{x\gamma} \) for all \(x \in X \) and \(\gamma \in \Gamma \).

By compactness of \(X' \), it is covered by \(\bigcup_{i=1}^{k} \pi(B_{\frac{1}{3}\delta_{x_i}}(x_i)) \) for finitely many \(x_i \)'s. For \(\delta = \frac{1}{3} \min_{i=1}^{k} \delta_{x_i} \), we claim every ball of radius \(\delta \) in \(X \) is

\(^1\)An action \(X \curvearrowright \Gamma \) is proper if the map \((x, \gamma) \to (x, x\gamma) \) is proper.

\(^2\)The construction of \(X' \) relies on the properness of the action.
CHAPTER 4. ENTROPY AND MIXING

projected injectively to X'. Indeed, if $\pi(z_1) = \pi(z_2)$ and $d(z_1, z_2) < \delta$, choose $x \in \{x_1, \cdots, x_k\}$ such that $\pi(z_1) \in \pi(B_{\frac{\delta}{2}}(x))$. Then there are $\gamma_1, \gamma_2 \in \Gamma$ such that $z_j \in B_{\frac{\delta}{2}}(x\gamma_j)$. Since $d(z_1, z_2) < \delta$, it follows $d(x\gamma_1, x\gamma_2) < \delta + \frac{2}{3}\delta_x \leq \delta_x$, or equivalently $d(x, x\gamma_2\gamma_1^{-1}) < \delta_x$. This contradicts the choice of δ_x, by which π is injective on $B_{\delta_x}(x)$.

Because T is uniformly continuous, there exists $\epsilon_0 \in (0, \delta)$ such that if $d(x, y) < \epsilon_0$, then $d(Tx, Ty) < \delta$. We prove the following claim:

Claim 4.1.4. For all $\epsilon \in (0, \epsilon_0)$, $N \in \mathbb{N}$, and $x \in X$, π is an isometry (and thus bijective) between $B_{N, \epsilon}(x)$ and $B_{N, \epsilon}(\pi(x))$.

We now prove the claim above. By the choice above, we know π is injective on $B_{N, \epsilon}(x) \subseteq B_{\epsilon}(x)$. It suffices to prove the image is $B_{N, \epsilon}(\pi(x))$. For every $z \in B_{N, \epsilon}(x)$ and $0 \leq n \leq N - 1$, $d(T^n x, T^n z) < \epsilon$ and thus

$$d((T')^n \pi(x), (T')^n \pi(z)) = d(\pi(T^n x), \pi(T^n z)) < \epsilon.$$

So $\pi(B_{N, \epsilon}(x)) \subseteq B_{N, \epsilon}(\pi(x))$. On the other hand, if $z' \in B_{N, \epsilon}(\pi(x)) \subseteq B_{\epsilon}(\pi(x)) = \pi(B_{\epsilon}(x))$, then $z' = \pi(z)$ for some $z \in B_{\epsilon}(x)$. It can be shown inductively that $d(T^n x, T^n z) < \epsilon$. Indeed, this is true for $n = 0$ by construction. Suppose $d(T^{n-1} x, T^{n-1} z) < \epsilon$, then $d(T^n x, T^n z) < \delta$ so $T^n z \in B_{\delta}(T^n x)$ Furthermore, when $n \leq N - 1$,

$$d(\pi(T^n x), \pi(T^n z)) = d((T')^n \pi(x), (T')^n z') < \epsilon,$$

Since π is an isometry on $B_{\delta}(T^n x)$, $d(T^n x, T^n z) < \epsilon$. Therefore $z \in B_{N, \epsilon}(x)$, which implies $\pi(B_{N, \epsilon}(x)) = B_{N, \epsilon}(\pi(x))$. The claim is established.

Given the claim, we know that $S_{N, \epsilon}(X') \leq S_{N, \epsilon}(Y)$ where $Y \subseteq X$ is a sufficiently large compact set such that $\pi(Y) = X'$ (it suffices to choose, for example, $\bigcup_{i=1}^k B_{\frac{\delta}{2}}(x_i)$.) It follows that $h_{\text{top}}(T') \leq h_{\text{top}}(T)$.

On the other hand, any compact subset $Y \subset X$ is covered by a finitely union balls $\bigcup_{i=1}^k B_{\delta}(y_i)$ of radius δ, where K depends only on π, Y and δ. Each $\pi(B_{\delta}(y_i))$ can be covered by the union of $S_{N, \epsilon}(X')$ Bowen balls $B_{N, \epsilon}(z_{ij}^i)$, $1 \leq j \leq S_{N, \epsilon}(X')$. Here each z_{ij}^i is in $\pi(B_{\delta}(y_i))$ has a lift z_{ij} in $B_{\delta}(y_i)$. Thus the union of $B_{N, \epsilon}(z_{ij}) = (\pi|_{B_{\delta}(y_i)})^{-1}(B_{N, \epsilon}(z_{ij}^i) \cap B_{\delta}(y_i))$, over $j = 1, \cdots, S_{N, \epsilon}(X')$, covers $B_{\delta}(y_i)$. So Y can be covered by $K \cdot S_{N, \epsilon}(X')$ balls in distance d_N. Therefore

$$\lim_{n \to \infty} \frac{1}{N} \log S_{N, \epsilon}(Y) \leq \lim_{n \to \infty} \frac{1}{N} \left(\log S_{N, \epsilon}(X') + \log K \right) = \lim_{n \to \infty} \frac{1}{N} \log S_{N, \epsilon}(X')$$

for all compact subsets Y, and thus $h_{\text{top}}(T') \leq h_{\text{top}}(T')$. The proof is completed. \qed
We now briefly review the theory of measure-theoretic entropy. The notions and theorems below can be found in, for example, [ELW18, Ch. 2]. It is not hard to see that

Lemma 4.1.5. For $n \in \mathbb{N}$, $h_\mu(T^n|A) = nh_\mu(T|A)$.

Hereafter, let (X, \mathcal{B}, T, μ) be a measure preserving dynamical system, $\mathcal{A} \subseteq \mathcal{B}$ be a countably generated T-invariant σ-subalgebra. From the discussion in §3.2, we have conditional measure μ^A_x, supported on the atom $[x]^A$, for μ-almost every $x \in X$.

Definition 4.1.6. For a finite measurable partition Q of X, define the conditional information function

$$I_\mu(Q|A)(x) = -\log \mu^A_x([x]^Q),$$

where $[x]^Q$ is the atom of Q containing x. The conditional entropy of Q, with respect to μ and conditional to A, is given by

$$H_\mu(Q|A) = \int_X I_\mu(Q|A)(x) d\mu(x).$$

When A is the trivial σ-algebra modulo μ, i.e. only consists of null and conull sets, one can omit the symbol “$|A$” in $I_\mu(Q|A)(x)$ and $H_\mu(Q|A)$ and the word “conditional” above.

The absolute and conditional entropies are related by

$$H_\mu(Q|A) = \int_X H_\mu^A(Q)d\mu(x). \quad (4.3)$$

The quantity $H_\mu(Q|A)$ is increasing in Q and decreasing in A, where the orderings of partitions and σ-algebras are given by refinements. This can be proved using the Jensen inequality and the fact that $x \to -x \log x$ is a concave function on $[0, 1]$. Moreover, it is subadditive in Q:

$$H_\mu(P \vee Q|A) \leq H_\mu(P|A) + H_\mu(Q|A). \quad (4.4)$$

Here and below, $P \vee Q$ denotes the coarsest common refinement $\{P \cap Q : P \in \mathcal{P}, Q \in \mathcal{Q}\}$ of two partitions Q and Q. Indeed,

$$H_\mu(P \vee Q|A) = H_\mu(P|Q \vee A) + H_\mu(Q|A), \quad (4.5)$$

where $Q \vee A$ is the σ-algebra generated by $\{Q \cap A : Q \in \mathcal{Q}, A \in \mathcal{A}\}$.
Notice that when \mathcal{A} is trivial modulo μ, $\mu^\mathcal{A}_x = \mu$ for μ-a.e. x. It is clear that $0 \leq H_\mu(Q|A) \leq H_\mu(Q)$. From (4.3), it is not hard to see that $H_\mu(Q|A) \leq \log n$ if every atom of \mathcal{A} intersects no more than n atoms of Q. In particular, $H_\mu(Q) \leq \log(\#Q)$.

Since \mathcal{A} and μ are both T-invariant, $H_\mu(Q|A) = H_\mu(T^{-1}Q|A)$ for the partition $T^{-1}Q = \{T^{-1}(P) : P \in Q\}$. Therefore,

$$H_\mu\left(\bigvee_{n=0}^{N-1} T^{-n}Q|A\right) = \sum_{k=0}^{N-1} H_\mu\left(Q\big|\left(\bigvee_{n=1}^{N} T^{-n}Q\right) \vee A\right).$$

By the monotonicity above, $H_\mu(Q\big|\left(\bigvee_{n=1}^{k} T^{-n}Q\right) \vee A)$ is decreasing as k grows and thus the limit

$$h_\mu(T, Q|A) = \lim_{N \to \infty} \frac{1}{N} H_\mu\left(\bigvee_{n=0}^{N-1} T^{-n}Q|A\right) = \lim_{N \to \infty} H_\mu\left(Q\big|\left(\bigvee_{n=1}^{N} T^{-n}Q\right) \vee A\right)$$

exists.

Definition 4.1.7. For a countably generated T-invariant σ-subalgebra \mathcal{A} and a T-invariant probability measure μ, the conditional measure-theoretic entropy of T, with respect to μ, and conditional to \mathcal{A}, is $h_\mu(T|A) = \sup_Q h_\mu(T, Q|A)$ where the supremum is taken over all finite measurable partitions. This is called the **measure-theoretic entropy or Kolmogrov-Sinai entropy** of T when \mathcal{A} is trivial modulo μ, denoted by $h_\mu(T)$.

The measure-theoretic analogue to Lemma 4.1.5

Lemma 4.1.8. For $n \in \mathbb{N}$, $h_\mu(T^n|A) = nh_\mu(T|A)$.

Two fundamental theorems about the measure-theoretic entropy are:

Theorem 4.1.9 (Variational Principle). If (X, \mathcal{B}, T) is a topological dynamical system, then

$$h_{top}(T) = \sup_\mu h_\mu(T)$$

where the supremum can be taken either over all T-invariant probability measures or all ergodic T-invariant probability measures.

Theorem 4.1.10 (Kolmogrov-Sinai). If (Q_k) is an increasing sequence of finite measurable partitions, which together generates the σ-algebra \mathcal{B}, then

$$h_\mu(T|A) = \lim_{k \to \infty} h_\mu(T, Q_k|A) = \sup_{k \to \infty} h_\mu(T, Q_k|A).$$

It follows from the Martingale Convergence Theorem that $h_\mu(T, Q|A) = H_\mu\left(Q\big|\bigvee_{n=1}^{\infty} T^{-n}Q\right) \vee A)$, where $\bigvee_{n=1}^{\infty} T^{-n}Q$ is the σ-algebra generated by all the $T^{-n}Q$'s.
Another important theorem that we need is the Abramov-Rokhlin formula:

Theorem 4.1.11 (Abramov-Rokhlin formula). Suppose \(\pi : (X, \mathcal{B}, T, \mu) \to (Y, \mathcal{A}, S, \nu) \) is a factor map between measure preserving dynamical systems. Then

\[
h_{\mu}(T) = h_{\nu}(S) + h_{\mu}(T|_{\pi^{-1}A}).
\]

Exercises

Exercise 4.1.1. Prove that the translation \(Tx = x + b \) on the torus \(\mathbb{T}^d \) has topological entropy 0.

Exercise 4.1.2. Prove that if a homeomorphism \(T : \mathbb{T}^1 \to \mathbb{T}^1 \) is homotopic to identity, then it has topological entropy 0.

Exercise 4.1.3. Let \(\rho \) be a joining (see Definition 4.4.3 later) between measure preserving dynamical systems \((X, \mathcal{B}, T, \mu) \) and \((Y, \mathcal{A}, S, \nu) \). Show that \(h_{\rho}(T \times S) \leq h_{\mu}(T) + h_{\mu}(S) \).

4.2 Topological entropy of affine automorphisms

We will first study \(h_{\text{top}}(T) \) for the affine transform \(Tx = Ax + b \) on \(X = \mathbb{R}^d \), where \(A \in \text{GL}(d, \mathbb{R}) \) and \(b \in \mathbb{R}^d \). We will use the Euclidean distance on \(\mathbb{R}^d \), and the standard volume form \(m_{\mathbb{R}^d} \).

First of all, notice that for all \(x, y, v \in \mathbb{R}^d \) and \(n \geq 0 \),

\[
T^n(x + v) - T^n x = T^n(y + v) - T^n y = A^n v.
\]

Therefore,

\[
B_{N,\epsilon}(y) = B_{N,\epsilon}(x) + (y - x), \forall N \in \mathbb{N}, \forall x, y \in \mathbb{R}^d. \tag{4.6}
\]

Proposition 4.2.1. If \(Tx = Ax + b \) on \(X = \mathbb{R}^d \), where \(A \in \text{GL}(d, \mathbb{R}) \) and \(b \in \mathbb{R}^d \), then \(h_{\text{top}}(T) \) is given by the volume entropy

\[
h_{\text{vol}}(T) = \lim_{\epsilon \to 0} \limsup_{N \to \infty} -\frac{1}{N} \log m_{\mathbb{R}^d}(B_{N,\epsilon}(x)),
\]

which is independent of \(x \).

Proof. By (4.6), the volume entropy is independent of \(x \).
Let $Y_k \subseteq \mathbb{R}^d$ be the compact ball $\overline{B_k(0)}$ of radius k centered at 0. Then $h_{\text{top}}(T) = \sup_{k \to \infty} \lim_{n \to \infty} \frac{1}{N} \log S_{N,\epsilon}(Y_k)$. Because $S_{N,\epsilon}(Y) \geq \frac{m_{\mathbb{R}^d}(Y_k)}{m_{\mathbb{R}^d}(B_{N,\epsilon}(x))}$, we see that
\[
\lim_{n \to \infty} \frac{1}{N} \log S_{N,\epsilon}(Y_k) \geq \limsup_{N \to \infty} -\frac{1}{N} \log m_{\mathbb{R}^d}(B_{N,\epsilon}(x)), \forall k
\]
and $h_{\text{top}}(T) \geq h_{\text{vol}}(T)$ after taking limit in k and ϵ.

On the other hand, assuming $0 < \epsilon < 1$, write $S'_{N,\frac{1}{2}\epsilon}(Y_k)$ for the maximal number of disjoint Bowen balls of the form $B_{N,\frac{1}{2}\epsilon}(z)$ that Y_k can contain. Then $S'_{N,\frac{1}{2}\epsilon}(Y_{k+1}) \geq S_{N,\epsilon}(Y_k)$. In fact, if $B_{N,\epsilon}(z_i), i = 1, \cdots, S'$ are disjoint and contained in Y_{k+1}, then every $z \in Y_k$ must be covered by one of the $B_{N,\epsilon}(z_i)$’s as otherwise $B_{N,\frac{1}{2}\epsilon}(z) \subseteq B_{k+\frac{1}{2}\epsilon}(0) \subseteq Y_{k+1}$ would be disjoint from each $B_{N,\frac{1}{2}\epsilon}(z_i)$ and could be added into the collection of disjoint Bowen balls, contradicting the maximality of this collection.

It follows that $S_{N,\epsilon}(Y_k) \leq S'_{N,\frac{1}{2}\epsilon}(Y_{k+1}) \leq \frac{m_{\mathbb{R}^d}(Y_k)}{m_{\mathbb{R}^d}(B_{N,\frac{1}{2}\epsilon}(x))}$, so
\[
\lim_{n \to \infty} \frac{1}{N} \log S_{N,\epsilon}(Y_k) \leq \limsup_{N \to \infty} -\frac{1}{N} \log m_{\mathbb{R}^d}(B_{N,\frac{1}{2}\epsilon}(x)), \forall k
\]
and $h_{\text{top}}(T) \leq h_{\text{vol}}(T)$ after taking limit. The proof is complete.

Therefore, in order to calculate $h_{\text{top}}(T)$, it suffices to estimate the size of $B_{N,\epsilon}(x)$.

Like in §3.3, decompose \mathbb{C}^d as the direct sum $\bigoplus \lambda V^\lambda_C$ of generalized eigenspaces, where $V^\lambda_C = V^\lambda_{\mathbb{C}}$. Then $\mathbb{R}^d = \bigoplus_{\lambda \geq 0} V^\lambda$, where
\[
V^\lambda = \begin{cases}
\ker_{\mathbb{R}^d}(A - \lambda \text{Id})^d, & \text{if } \lambda \in \mathbb{R}; \\
(V^\lambda_C \oplus V^\lambda) \cap \mathbb{R}^d, & \text{if } \lambda \notin \mathbb{R}.
\end{cases}
\]

For each eigenvalue λ, write $|\lambda|_+ = \max(1, |\lambda|)$.

Proposition 4.2.2. If $\mathbb{R}^d = V^\lambda$ for some $\lambda \in \mathbb{C}\setminus\{0\}$, then there exists $K > 1$ that depends only on A and d, such that for all $\epsilon > 0$,
\[
B_{K^{-1}N^{-(d-1)|\lambda|_+N\epsilon}}(x) \subseteq B_{N,\epsilon}(x) \subseteq B_{K^{-1}N^{(d-1)|\lambda|_+N\epsilon}}(x).
\]
Lemma 4.2.3. Under the hypothesis of Proposition 4.2.2, there are a decomposition $A = A_0 J$ and a Hilbert norm $| \cdot |_0$ on \mathbb{R}^d such that $|A_0 v|_0 = |\lambda| |v|_0$ for all $v \in \mathbb{R}^d$, J is a unipotent matrix, and A_0, J commute.

Proof. Let

$$A_0 = \begin{cases} \lambda \text{Id}, & \text{if } \lambda \in \mathbb{R}; \\ \lambda |\cdot|_{V^\lambda} \oplus \lambda \text{Id}|_{V^\lambda}, & \text{if } \lambda \notin \mathbb{R}. \end{cases}$$

Clearly $|A_0 v| = |\lambda| \cdot |v|$ if $\lambda \in \mathbb{R}$. In the imaginary case, let $| \cdot |_0$ be the norm given by a non-degenerate inner product that makes V^λ_C and $V^\bar{\lambda}_C$ orthogonal. Then $|A_0 v|_0 = |\lambda| |v|_0$. $J = A_0^{-1} A$ has only eigenvalue 1 and is hence unipotent. Moreover, J preserves both V^λ_C and $V^\bar{\lambda}_C$, on both of which A_0 acts by scalar multiplication, hence A_0 commutes with J.

Finally, in the case when $\lambda \notin \mathbb{R}$, though A_0 is defined as a complex valued matrix, it commutes with complex conjugation and is therefore actually real valued. The lemma is established.

Since $K_1^{-1}|\cdot| \leq | \cdot |_0 \leq K_1 | \cdot |$ for some $K_1 > 1$, to prove Proposition 4.2.2 one may assume without loss of generality that $| \cdot | = | \cdot |_0$, by changing the value of C if necessary.

Proof of Proposition 4.2.2. By (4.6), it is enough to assume $x = 0$. Then $T^n y - T^n 0 = A^n y = J^n A^n_0 y$.

Lower bound. If $|y| < K^{-1} N^{-(d-1)} |\lambda|_+^{-N} \epsilon$, then for all $0 \leq n \leq N - 1$, $|A^n_0 y| = |\lambda|^n |y| < K^{-1} N^{-(d-1)} \epsilon$. Since J is unipotent, all entries of J are polynomials in n of degree less than d, and $|J^n A^n_0 y| < \epsilon$ if K is chosen to be sufficiently large. Therefore $|T^n y - T^n 0| < \epsilon$ for all $0 \leq n \leq N - 1$, or in other words $y \in B_{N,\epsilon}(0)$.

Upper bound. Suppose $y \in B_{N,\epsilon}(x)$, i.e. $|T^n y| < \epsilon$ for all $0 \leq n \leq N - 1$. This is equivalent by Lemma 4.2.3 to that

$$|J^n y| < |\lambda|^{-n} \epsilon, \forall n = 0, \ldots, N - 1.$$ \hspace{1cm} (4.7)

If $|\lambda| \leq 1$, then $|\lambda|_+ = 1$ and we can take $n = 0$ in (4.7). This yields $|y| \leq \epsilon$ and is sufficient for the upper bound we need, with $K = 1$.

We now assume $|\lambda| = |\lambda|_+ > 1$. In this case, let $n = N - 1$ in (4.7). Then

$$|y| \leq \|J^{-(N-1)}\| \cdot |J^{N-1} y| \leq K_2 N^{d-1} \cdot |\lambda|^{-(N-1)} \epsilon $$

$$= K_2 |\lambda| \cdot N^{d-1} |\lambda|_+^{-N} \epsilon.$$

Here K_2 is a constant depending only on J, so $K = K_2 |\lambda|$ depends only on A. This proves the upper bound. \hfill \Box
We now return to the general case where \(\mathbb{R}^d \) is the direct sum of finitely many \(V^\lambda \)'s.

Corollary 4.2.4. In the setting of Proposition 4.2.1, there exists a constant \(K \) that depends only on \(A \) and \(d \), such that for all \(x \in \mathbb{R}^d \),

\[
K^{-1} N^{-d} e^{-hN \epsilon} d \leq \mathbf{m}_{\mathbb{R}^d}(B_{N,\epsilon}(x)) \leq K N^d d e^{-hN \epsilon} d,
\]

for

\[
h = \sum_{\lambda} \log |\lambda|_+,
\]

(4.8)

where the sum is taken over all eigenvalues \(\lambda \) of \(A \), with multiplicities counted.

Proof. First, remark that because any two inner products on \(\mathbb{R}^d \) bound each other up to a multiplicative constant, the statement of the corollary is not affected by switching to a different inner product on \(\mathbb{R}^d \) after taking a different value of \(K \) if necessary. By doing so, we can assume without loss of generality that all the subspaces \(V^\lambda, \Im \lambda \geq 0 \) are orthogonal to each other.

The map \(T \) is a direct product of affine transforms \(T^\lambda \) on \(V^\lambda \), where \(T^\lambda x = A^\lambda x + b^\lambda \), where \(A^\lambda \) only has eigenvalues \(\lambda \) and \(\bar{\lambda} \), and \(b^\lambda \) is the component of \(b \) in \(V^\lambda \). Similarly, decompose every \(x \in \mathbb{R}^d \) as \(\sum_\lambda x^\lambda \). Denote by \(B^T_{N,\epsilon}(x^\lambda) \) the Bowen ball of step \(N \) and radius parameter \(\epsilon \) around \(x^\lambda \in V^\lambda \). Then

\[
\prod_{\Im \lambda \geq 0} B^T_{N,\epsilon}(x^\lambda) \subseteq B_{N,\epsilon}(x) \subseteq \prod_{\Im \lambda \geq 0} B^T_{N,\epsilon}(x^\lambda).
\]

(4.9)

By Proposition 4.2.2,

\[
K^{-1} (N^{-d} |\lambda|_+^{-N \epsilon} \epsilon)^d \leq \mathbf{m}_{V^\lambda}(B^T_{N,\epsilon}(x^\lambda)) \leq K (N^d |\lambda|_+^{-N \epsilon} \epsilon)^d,
\]

(4.10)

where \(d^\lambda = \dim V^\lambda \) and \(K \) depends only on \(A \) and \(d^\lambda \).

After taking product, (4.9) and (4.10) together imply that

\[
K^{-d} N^{-\sum_{\Im \lambda \geq 0} (d^\lambda)^2} \prod_{\Im \lambda \geq 0} |\lambda|_+^{-N \epsilon} \epsilon^d \leq \mathbf{m}_{\mathbb{R}^d}(B_{N,\epsilon}(x))
\]

\[
\leq K^d N^\sum_{\Im \lambda \geq 0} (d^\lambda)^2 \prod_{\Im \lambda \geq 0} |\lambda|_+^{-N \epsilon} \epsilon^d.
\]

(4.11)

By switching to a different \(K \) and noting that \(\sum_{\Im \lambda \geq 0} (d^\lambda)^2 \leq d^2 \), (4.12) becomes

\[
K^{-1} N^{-d^2} \left(\prod_{\Im \lambda \geq 0} |\lambda|_+^{d^\lambda} \right)^{-N \epsilon} \leq \mathbf{m}_{\mathbb{R}^d}(B_{N,\epsilon}(x))
\]

\[
\leq K N^d \left(\prod_{\Im \lambda \geq 0} |\lambda|_+^{d^\lambda} \right)^{-N \epsilon}.
\]

(4.12)
where K depends only on A and d, and the product $\prod_{\Im \lambda \geq 0} |\lambda|^d_\Lambda$ is taken over all eigenvalues λ with non-negative real part, without counting multiplicities. To conclude, it suffices to notice that this product is equal to e^{-h} for the quantity h in (4.8), as imaginary eigenvalues appear in conjugate pairs $\lambda, \bar{\lambda}$.

We are now ready to state the main theorems of this section.

Proposition 4.2.5. If $Tx = Ax + b$ on $X = \mathbb{R}^d$, where $A \in \text{GL}(d, \mathbb{R})$ and $b \in \mathbb{R}^d$, then $h_{\text{top}}(T)$ is given by (4.8).

Proof. This follows from Proposition 4.2.1 and Corollary 4.2.4. \qed

By the variational principle, we know that $h_{\text{m}}(T) \leq h_{\text{top}}(T)$. In the case of toral automorphisms, the inequality holds.

Theorem 4.2.6. If $Tx = Ax + b$ on $X = \mathbb{T}^d$, where $A \in \text{GL}(d, \mathbb{Z})$ and $b \in \mathbb{R}^d$, then $h_{\text{m}}(T) = h_{\text{top}}(T) = \sum \lambda \log |\lambda|_+$, where the sum is taken over all eigenvalues λ of A, with multiplicities counted.

Proof. Denote by \bar{T} the affine transform $x \rightarrow Ax + b$ on \mathbb{R}^d, then by Lemma 4.1.3 and Proposition 4.2.5, $h_{\text{top}}(T) = h_{\text{top}}(\bar{T}) = \sum \lambda \log |\lambda|_+$.

For $L \in \mathbb{N}$, let $Q = Q_L$ be the measurable partition of \mathbb{T}^d into L^d boxes, each of which is a translate of $[0, \frac{1}{L})^d$. Then

$$h_{\text{m}}(T) \geq h_{\text{m}}(T, Q) = \lim_{N \to \infty} \frac{1}{n} H_{\text{m}}(\bigvee_{n=0}^{N-1} T^{-n} Q).$$

Note that if $\varepsilon \geq \frac{\sqrt{d}}{L}$, then for all atoms P of $\bigvee_{n=0}^{N-1} T^{-n} Q$ and $x \in P$, $P \subset B_{N,\varepsilon}(x)$. When L is sufficiently large, ε is bounded by the constant ε_0 in Claim 4.1.4, and we know that $B_{N,\varepsilon}(x)$ is an isometrically projected copy of the Bowen ball $B_{N,\varepsilon} (\tilde{x}) \subset \mathbb{R}^d$ with respect to \bar{T}. It then follows from Corollary 4.2.4 that

$$m_{\mathbb{T}^d}(P) \leq m_{\mathbb{T}^d}(B_{N,\varepsilon}(x)) = m_{\mathbb{T}^d}(B_{N,\varepsilon}(\tilde{x})) \leq KN^d e^{-h_{\text{top}}(T)N} \varepsilon^d$$

for some constant K that depends only on T. We obtain that

$$I_{\text{m}}(\bigvee_{n=0}^{N-1} T^{-n} Q)(x) \geq Nh_{\text{top}}(T) - d^2 \log N - \log(K\varepsilon^d)$$
for all x and thus
\[
\frac{1}{N} H_{m_{Td}}(\bigvee_{n=0}^{N-1} T^{-n} Q) \geq \frac{1}{N} (Nh_{\text{top}}(T) - d^2 \log N - \log(K e^d))
\]
\[
= h_{\text{top}}(T) - \frac{1}{N} (d^2 \log N + \log(K e^d)).
\]

By taking limit, we conclude that $h_{m_{Td}}(T) \geq h_{m_{Td}}(T, Q) \geq h_{\text{top}}(T)$. On the other hand, $h_{m_{Td}}(T) \leq h_{\text{top}}(T)$ by variational principle. The theorem is established.

Exercises

Exercise 4.2.1. Let $X \subset [0, 1]$ be the middle-$\frac{1}{3}$ Cantor set, and $T : X \to X$ be the continuous map $Tx = 3x \pmod{1}$. Show that $h_{\text{top}}(T) = \log 2$.

Exercise 4.2.2. Let $X \subset (\mathbb{T}^1)^\mathbb{Z}$ be the compact set
\[
\{(x_n)_{n \in \mathbb{Z}} : x_n \in \mathbb{T}^d, x_{n+1} = 2x_n, \forall n \in \mathbb{Z}\}
\]
and let $T : X \to X$ be the shift map defined by $(Tx)_n = x_{n+1}$. Show that $h_{\text{top}}(T) = \log 2$.

4.3 Entropy on principal torus bundles and nilmanifolds

In this section, we adopt the settings from §3.4 with $K = \mathbb{T}^d$. In other words, we have a continuous factor map between two measure preserving dynamical systems (X, B, T, μ) and (X_0, B_0, T_0, μ_0) such that: X a principal \mathbb{T}^d-bundle X over a compact base space X_0 where \mathbb{T}^d is a compact abelian group; B is the product σ-algebra between B_0 and the Borel σ-algebra $B_{\mathbb{T}^d}$ of \mathbb{T}^d, μ is ergodic and μ is invariant under translations by \mathbb{T}^d (i.e. uniform along fibers); and for some automorphism A of \mathbb{T}^d such that $Tzx = A(z)Tx$ for $z \in \mathbb{T}^d$.

Theorem 4.3.1. In these settings, $h_{\mu}(T) = h_{\mu_0}(T_0) + h_{\text{top}}(A)$.

This theorem appeared in Parry’s paper [Par69a], where it was attributed to Yuzvinskii [Juz65]. It was later generalized by Thomas [Tho71] to general compact groups \mathbb{T}^d.

Proof. By Abramov-Rokhlin formula (Theorem 4.1.11), it suffices to show:

\[h_\mu(T|\pi^{-1}B_0) = h_{\text{top}}(A) = h_{m_{z\theta}}(A). \]

We first set up a coordinate system on \(X \). Fix a piecewise continuous section \(\theta : X_0 \to X \), such that \(\pi \circ \theta = \text{id} \). It determines a measurable isomorphism \(\psi \) between \(X \) and \(X_0 \times \mathbb{T}^d \) by \(\psi(z\theta(x_0)) = (x_0, z) \) for all \(x_0 \in X_0 \) and \(z \in \mathbb{T}^d \).

The image \(T\theta(x_0) \) sits in the fiber \(\pi^{-1}(T_0x_0) \), so \(T\theta(x_0) = w(x_0)\theta(T_0x_0) \) for some piecewise continuous function \(w : X_0 \to \mathbb{T}^d \). In other words, \(T\psi(x_0, 0) = \psi(T_0x_0, w(x_0)) \), where we view \(\mathbb{T}^d \) as an additive group with the identity denoted by 0. It then follows that \(T\psi(x_0, z) = \psi(T_0x_0, w(x_0) + A(z)) \). In other words, \(T \) is measurably isomorphic to the map \((x_0, z) \to (T_0x_0, w(x_0) + A(z)) \) on \(X_0 \times \mathbb{T}^d \). By abusing notation, we view \(X \) as \(X_0 \times \mathbb{T}^d \) and and view \(T \) as the map above. For simplicity, we also write \(\mathcal{B}_0 \) for the \(\sigma \)-subalgebra \(\pi^{-1}\mathcal{B}_0 \) of \(\mathcal{B} \). Define \(\iota_{x_0} : \mathbb{T}^d \to X \) by \(\iota_{x_0}(z) = (x_0, z) \). Then or \(x = (x_0, z) \), \(\mu_{x_0}^{\mathbb{T}^d} \) is the unique \(\mathbb{T}^d \)-invariant probability measure along the fiber \(\pi^{-1}(x_0) = \mathbb{T}^d x \) and hence coincides with \((\iota_{x_0})_*m_{\mathbb{T}^d} \).

Let \((Q_L^n) \) be an increasing sequences of measurable partitions of \(X_0 \), which generate \(\mathcal{B}_0 \) toghter as a sequence. As in the proof of Theorem 4.2.6, let \(Q_L^n \) be the measurable partition of \(\mathbb{T}^d \) into \(L^d \) translated copies of \([0, 1/L]^d \). Define \(Q_L = Q_L^n \times Q_{\mathbb{T}^d}^n \). Then the \(Q_L \)'s generate together the \(\sigma \)-algebra \(\mathcal{B} \). We know that \(h_\mu(T|\mathcal{B}_0) = \lim_{i \to \infty} h_\mu(T, Q_L|\mathcal{B}_0) \) and \(h_{m_{z\theta}}(A) = \lim_{i \to \infty} h_{m_{z\theta}}(A, Q_L) \). Therefore it suffices to show: given any \(\delta > 0 \), for sufficiently large \(L \),

\[|h_\mu(T, Q_L|\mathcal{B}_0) - h_{m_{z\theta}}(A, Q_L)| < \delta. \tag{4.13} \]

Because

\[
H_\mu \left(\bigvee_{n=0}^{N-1} T^{-n}Q_L | B_0 \right) = \int_X H_{\mu_{x_0}^{\mathcal{B}_0}} \left(\bigvee_{n=0}^{N-1} T^{-n}Q_L \right) d\mu(x)
= \int_{X_0} H_{(\iota_{x_0})_*m_{\mathbb{T}^d}} \left(\bigvee_{n=0}^{N-1} T^{-n}Q_L \right) d\mu_0(x_0)
= H_{m_{\mathbb{T}^d}} \left(\bigvee_{n=0}^{N-1} T^{-n}Q_L \right) d\mu_0(x_0).
\]
we know

\[
h_{\mu}(T, Q_L|B_0) = \lim_{N \to \infty} \frac{1}{N} \int_{X_0} H_{\mu_d} \left(\sum_{n=0}^{N-1} T^{-n} Q_L \right) d\mu_0(x_0)
\]

\[
= \lim_{N \to \infty} \frac{1}{N} \int_{X_0} H_{\mu_d} \left(\bigvee_{n=0}^{N-1} T^{-n} Q_L \right) d\mu_0(x_0)
\]

(4.14)

Moreover,

\[
h_{\mu_d}(A, Q_L) = \lim_{N \to \infty} \frac{1}{N} H_{\mu_d} \left(\bigvee_{n=0}^{N-1} A^{-n} Q_L^d \right).
\]

(4.15)

Because \(T^n t_{x_0}(z) = T^n(x_0, z) = T^n(x_0, 0) + A^n(z) \), \(t_{x_0}^{-1} T^{-n} Q_L \) is a translate of \(A^{-n} Q_L^d \). This implies that for \(L \geq 2 \), every atom of \(t_{x_0}^{-1} T^{-n} Q_L \) intersects at most \(2^d \) atoms of \(A^{-n} Q_L^d \); and every atom of \(t_{x_0}^{-1} T^{-n} Q_L \) intersects at most \(2^d \) atoms of \(A^{-n} Q_L^d \). In consequence, for all \(n \in \mathbb{N} \),

\[
H(t_{x_0}^{-1} T^{-n} Q_L|A^{-n} Q_L^d) \leq \log 2^d, \quad H(A^{-n} Q_L^d|t_{x_0}^{-1} T^{-n} Q_L) \leq \log 2^d.
\]

(4.16)

By (4.5), this implies that for all \(x_0 \),

\[
H_{\mu_d} \left(\bigvee_{n=0}^{N-1} t_{x_0}^{-1} T^{-n} Q_L \right) - H_{\mu_d} \left(\bigvee_{n=0}^{N-1} A^{-n} Q_L^d \right) \\
\leq H_{\mu_d} \left(\bigvee_{n=0}^{N-1} t_{x_0}^{-1} T^{-n} Q_L \bigvee_{n=0}^{N-1} A^{-n} Q_L^d \right) \\
\leq \sum_{n=0}^{N-1} H_{\mu_d} \left(t_{x_0}^{-1} T^{-n} Q_L \bigvee_{m=0}^{N-1} A^{-m} Q_L^d \right) \\
\leq \sum_{n=0}^{N-1} H_{\mu_d} \left(t_{x_0}^{-1} T^{-n} Q_L|A^{-n} Q_L^d \right) \leq N d \log 2.
\]

(4.17)

Similarly,

\[
H_{\mu_d} \left(\bigvee_{n=0}^{N-1} A^{-n} Q_L^d \right) - H_{\mu_d} \left(\bigvee_{n=0}^{N-1} t_{x_0}^{-1} T^{-n} Q_L \right) \leq N d \log 2.
\]

(4.17)

Combining the relations (4.14)-(4.17), we obtain the inequality (4.17) for \(\delta = d \log 2 \). In order to improve this to all \(\delta > 0 \), it suffices to note that for all
n ∈ \mathbb{N}, thanks to Lemma 4.1.8, \(n|h_\mu(T, Q_L|B_0) - h_{m_d}(A, Q_L)| < d \log 2 \) by applying this special case to \(T^n \). The general case of (4.17) then follows by letting \(n \to \infty \). We have therefore completed the proof of the theorem.

Proposition 4.3.2. If in Theorem 4.3.1, \(\mu \) is not assumed to be \(T^d \)-invariant, but still is a \(T \)-invariant extension of \(\mu_0 \), then

\[
h_\mu(T) \leq h_{\mu_0}(T_0) + h_{\text{top}}(A).
\]

Proof. By Abramov-Rokhlin formula, it suffices to prove \(h_\mu(T|B_0) \leq h_{\text{top}}(A) \).

Without the assumption that \(\mu \) is uniform along fibers, the same proof of the theorem would yield instead that \(h_\mu(T, Q_L|B_0) \leq \lim_{N \to \infty} \frac{1}{N} \sup \nu H_\nu \left(\bigvee_{n=0}^{N-1} A^{-n} Q_L^{T^d} \right) \), (4.18)

where the supremum is taken over all probability measures \(\nu \) on \(\mathbb{T}^d \).

For \(\epsilon = \frac{1}{2L} \), cover \(\mathbb{T}^d \) with \(S_{N,\epsilon} \) Bowen balls \(B_{N,\epsilon}(x) \) with respect to \(A \). For all \(x \) and \(n \), \(B_\epsilon(A^n x) \) intersects at most \(2^d \) atoms of \(Q_L^{T^d} \). Therefore \(B_{N,\epsilon}(x) \) intersects no more than \(2^{Nd} \) atoms of \(\bigvee_{n=0}^{N-1} A^{-n} Q_L^{T^d} \). This shows the total number of atoms in \(\bigvee_{n=0}^{N-1} A^{-n} Q_L^{T^d} \) is bounded by \(2^{Nd} S_{N,\epsilon} \), and thus by (4.19),

\[
h_\mu(T, Q_L|B_0) \leq \lim_{N \to \infty} \frac{1}{N} \log 2^{Nd} S_{N,\epsilon} = \lim_{N \to \infty} \frac{1}{N} \log S_{N,\epsilon} + d \log 2.
\]

By letting \(L \) tend to \(\infty \), we obtain that

\[
h_\mu(T|B_0) \leq h_{\text{top}}(A) + d \log 2.
\]

Like in the proof of Theorem 4.3.1, one can get rid of the term \(d \log 2 \) by applying (4.19) to all powers \(T^n \) with \(n \) approaching \(\infty \), using Lemmas 4.1.5 and 4.1.8.

Theorem 4.3.3. For an affine transform \(T x = bA(x) \) on a compact nilmanifold \(M = G/\Gamma \), where \(A \in \text{Aut}(M) \) and \(b \in G \), then

\[
h_{m_d}(T) = h_{\text{top}}(T) = \sum \lambda \log |\lambda|_+,
\]

where the sum is taken over all eigenvalues \(\lambda \) of \(D_e A \), with multiplicities counted.
Proof. We first show that \(h_{m_{\mathcal{M}}}(T) = \sum_{\lambda} \log |\lambda|_+ \). Recall that \(M \) has the structure of a tower of principal torus bundles
\[
M = M_s \to M_{s-1} \to \cdots \to M_1 \to M_0 = \{ \text{pt} \},
\]
where the fiber between \(M_i \) and \(M_{i-1} \) is a torus quotient of \(G^{(i)}/G^{(i+1)} \cong \mathbb{R}^{d_i} \). The affines transform \(T_i \) that \(T \) induces on \(M_i \) is of the form \(T_i x = b_i A_i(x) \) where \(b_i \) and \(A_i \) are respectively projections of \(b \) and \(A \) to \(G/G^{(i+1)} \).

In particular, for \(x \in M_i \) and \(z \in G^{(i)}/G^{(i+1)} \), \(T_i(zx) = T x + A_i(z) \). Since the restriction of \(A_i \) to \(G^{(i)}/G^{(i+1)} \) is given by the matrix \(\psi_i \) in Proposition 3.1.5, which is from \(\text{GL}(d_i, \mathbb{Z}) \) according to the proof of Corollary 3.1.9, where \(\mathbb{Z}^{d_i} \) is identified with \(\Gamma^{(i)}/\Gamma^{(i+1)} \).

By Theorem 4.3.1, \(h_{m_{\mathcal{M}}}(T) = h_{m_{\mathcal{M}_{i+1}}}(T_{i+1}) + h_{\text{top}}(\psi_i) \). Thus
\[
h_{m_{\mathcal{M}}}(T) = h_{m_{\mathcal{M}}(s)}(T_s) = \sum_{i=1}^{s} h_{\text{top}}(\psi_i) = \sum_{i=1}^{s} \sum_{\lambda: \text{eigenvalue of } \psi_i \text{ counting multiplicities}} \log |\lambda|_+ \]
here \(h_{\top}(\psi_i) \) is given by Theorem 4.2.6, and the last inequality is based on Proposition 3.1.5.

It remains to show that \(h_{\text{top}}(T) = h_{m_{\mathcal{M}}}(T) \). By the variational principle, \(h_{\text{top}}(T) \geq h_{m_{\mathcal{M}}}(T) \). On the other hand, for all \(T \)-invariant probability measures \(\mu \), we can show \(h_{\mu}(T) \leq h_{m_{\mathcal{M}}}(T) \) by the argument above and Proposition 4.3.2. So the variational principle also implies \(h_{\text{top}}(T) \leq h_{m_{\mathcal{M}}}(T) \). \(\square \)

Exercises

Exercise 4.3.1. Let \(T \) be an affine automorphism of a compact nilmanifold \(M = G/\Gamma \), where \(G \) is a simply connected \(s \)-step nilpotent Lie group. Suppose \(h: M \to G_{(s)} \) is a continuous function that is constant along \(G_{(s)} \)-orbits. Prove that the map \(\tilde{T}: x \to h(x).Tx \) on \(M \) has the same topological entropy as \(T \).

4.4 Mixing of affine automorphisms of nilmanifolds

This section will first characterize weakly mixing affine automorphisms of a compact nilmanifold \(M = G/\Gamma \). It will then be shown that they are
all mixing and in fact K-mixing. As usual, let T_1 be the projection of an affine automorphism T to the horizontal torus $M_1 = G/G(2) \Gamma \cong \mathbb{T}^{d_1}$. If $Tx = bA(x)$ then $T_1x = A_1x + b$ where $A_1 \in \text{GL}(d_1, \mathbb{Z})$, identified with D_eA_1, is a projection of the matrix D_eA.

Theorem 4.4.1. For an affine automorphism $Tx = bA(x)$ of M, the following are equivalent:

1. T is weakly mixing;
2. T_1 is weakly mixing;
3. A_1 has not roots of unity among its eigenvalues.

Proof. (1)\iff(2). Since $T_1 \times T_1$ is the projection of the affine automorphism $T \times T$ of $M \times M$ to its horizonal torus $M_1 \times M_1$. By Theorem 3.2.9 and Theorem 3.5.1, (1) \iff $T \times T$ is ergodic \iff $T_1 \times T_1$ is ergodic \iff (2).

(2)\rightarrow(3). Suppose A_1 has a non-trivial root of unity among its eigenvalues, then T_1 is not ergodic, and hence not weakly mixing, by Lemma 3.3.3.

If 1 is an eigenvalue of A_1, then by the discussion at the end of §3.3, T_1 has a maximal rotation factor S which is a translation of a torus Y. Because $S \times S$ preserves every translate the diagonal subtorus $\triangle_Y = \{(y, y) : y \in Y\}$ in $Y \times Y$, the uniform probability measure on $Y \times Y$ decomposes into the average of the uniform measures on these translated subtori, each of which is $S \times S$-invariant. So $S \times S$ is not ergodic and therefore S is not weakly mixing. It follows that T_1 is not weakly mixing either.

(3)\rightarrow(2). If the eigenvalues of A_1 include no roots of unity, then neither do those of $A_1 \times A_1$, which is the linear part of $T_1 \times T_1$. So by Theorem 3.3.5, $T_1 \times T_1$ is ergodic and thus T_1 is weakly mixing.

The remainder of this section will be used to prove:

Theorem 4.4.2. If an affine automorphism T of a compact nilmanifold M is weakly mixing, then it is also K-mixing, and thus mixing.

For this we need the notions of joining and disjointness, introduced by Furstenberg [Fur67]. The facts stated below can be found in [Par81, §4.3-4.4].

Definition 4.4.3. Let $(X, \mathcal{B}_X, T, \mu)$ and $(Y, \mathcal{B}_Y, S, \nu)$ be measure preserving dynamical systems. A **joining** between μ and ν is a $T \times S$-invariant probability measure ρ on $X \times Y$ that projects respectively to μ and ν in both coordinates. The systems are called **disjoint** if $\mu \times \nu$ is the only joining.
Suppose the systems are disjoint and $(Z, \mathcal{B}_Z, R, \rho)$ is another measure preserving dynamical systems that has both $(X, \mathcal{B}_X, T, \mu)$ and $(Y, \mathcal{B}_Y, S, \nu)$ as factors, with the factor maps respectively denoted by π_X and π_Y. Then $(\pi_X \times \pi_Y)_* \rho$ is a joining measure between μ and ν on $X \times Y$ and is thus equal to $\mu \times \nu$. This shows that for all $U \in \mathcal{B}_X$ and $V \in \mathcal{B}_Y$,

$$\rho(\pi_X^{-1}(U) \cap \pi_Y^{-1}(V)) = \rho((\pi_X \times \pi_Y)^{-1}(U \times V)) = (\pi_X \times \pi_Y)_* \rho(U \times V) = (\mu \times \nu)(U \times V) = \mu(U) \nu(V).$$

(4.20)

Since factor systems of a measure preserving dynamical system correspond to invariant σ-algebras (modulo null sets), (4.20) can be rephrased as:

Lemma 4.4.4. For a measure preserving dynamical system (X, \mathcal{B}, T, μ), if for two T-invariant σ-algebras $A_1, A_2 \subseteq \mathcal{B}$, the factor systems (X, A_1, T, μ) and (X, A_2, T, μ) are disjoint, then $\mu(U_1 \cap U_2) = \mu(U_1)\mu(U_2)$ for all $U_i \in A_i$, $i = 1, 2$.

Pinsker [Pin60] proved that:

Theorem 4.4.5 (Pinsker). All K-mixing measure preserving dynamical systems are disjoint to all those of zero measure-theoretic entropy.

In addition, he also introduced the so called Pinsker σ-algebra.

Definition 4.4.6. Given a measure preserving dynamical system (X, \mathcal{B}, T, μ), the Pinsker σ-algebra is the collection $\mathcal{P} = \{ U \in \mathcal{B} : h_\mu(T, \{ U, U^c \}) = 0 \}$.

It follows from the subadditivity of entropy that \mathcal{P} is a σ-subalgebra.

Lemma 4.4.7. If the Pinsker σ-algebra is trivial, then (X, \mathcal{B}, T, μ) is K-mixing.

Proof. Note that if \mathcal{P} is trivial modulo μ, then for every T-invariant σ-subalgebra \mathcal{A} that is non-trivial modulo μ, there is at least one $U \in \mathcal{A}$, such that $\mu(U) \neq 0$ and $\mu(U^c) \neq 0$. Then $U \notin \mathcal{P}$ and thus $h_\mu(T, \{ U, U^c \}) > 0$. Therefore the dynamical system (X, \mathcal{A}, T, μ) has positive entropy. So (X, \mathcal{B}, T, μ) is K-mixing.

Lemma 4.4.8. For $k \in \mathbb{N}$, (X, T, \mathcal{B}, μ) and $(X, T^k, \mathcal{B}, \mu)$ have the same Pinsker σ-algebra.
CHAPTER 4. ENTROPY AND MIXING

91

Proof. For the partition \(\mathcal{U} = \{ U, U^c \} \),

\[
\frac{1}{kN} H_\mu \left(\bigvee_{n=0}^{kN-1} T^{-n} \mathcal{U} \right) = \frac{k}{kN} H_\mu \left(\bigvee_{j=0}^{k-1} \bigvee_{n=0}^{N-1} (T^k)^{-n} \mathcal{U} \right) \leq \frac{k}{kN} \sum_{j=0}^{k-1} H_\mu \left(\bigvee_{n=0}^{N-1} (T^k)^{-n} \mathcal{U} \right) = \frac{1}{kN} \cdot kH_\mu \left(\bigvee_{n=0}^{N-1} (T^k)^{-n} \mathcal{U} \right) = \frac{1}{N} H_\mu \left(\bigvee_{n=0}^{N-1} (T^k)^{-n} \mathcal{U} \right).
\]

On the other hand,

\[
\frac{1}{N} H_\mu \left(\bigvee_{n=0}^{N-1} (T^k)^{-n} \mathcal{U} \right) \leq k \cdot \frac{1}{kN} H_\mu \left(\bigvee_{n=0}^{kN-1} T^{-n} \mathcal{U} \right).
\]

By taking limit as \(N \to \infty \), the above inequalities show that \(h_\mu (T, \mathcal{U}) \leq h_\mu (T^k, \mathcal{U}) \leq kh_\mu (T, \mathcal{U}) \). So \(h_\mu (T, \mathcal{U}) = 0 \) if and only if \(h_\mu (T^k, \mathcal{U}) = 0 \). The lemma follows.

We are now ready to prove the key ingredient in Theorem 4.4.2.

Proposition 4.4.9. In the setting of Theorem 4.3.1, suppose \(A \) is a \(T \)-invariant subalgebra of \(B \) that is invariant under both \(T \) and the \(T^d \)-action \(\{ L_z : z \in \mathbb{T}^d \} \) on the principal \(\mathbb{T}^d \)-bundle \(X \). Assume that \((X, A, \mu)\) is ergodic for the \(T^d \)-action, i.e. if \(E \in A \) is \(L_z \)-invariant modulo a null set with respect to \(\mu \) for all \(z \in \mathbb{T}^d \), then \(\mu(E) \in \{0,1\} \). There exist a compact quotient group \(Y \) of \(\mathbb{T}^d \) and an affine automorphism \(S \) of \(Y \), in the form \(Sy = c\Psi(y) \) where \(c \in Y \) and \(\Psi \in \text{Aut}(Y) \), such that the measure preserving dynamical system \((X, A, T, \mu)\) is isomorphic to \((Y, B_Y, S, \mu_Y)\), where \(B_Y \) is the Borel \(\sigma \)-algebra of \(Y \).

Proof. Consider an \(A \)-measurable \(L^2 \)-integrable function \(f \). As \(A \subseteq B \), \(f \in L^2(B, \mu) \) decomposes into the Fourier series \(f(x) = \sum_{\xi \in \mathbb{Z}^d} \hat{f}(\xi, x) \) along the \(\mathbb{T}^d \)-fibers, for which Lemma 3.4.2 holds. By the construction (3.12) and the \(T^d \)-invariance of \(A \), each \(\hat{f}(\xi, x) \) is still \(A \)-measurable. Suppose \(f_1, f_2 \) are both non-trivial \(A \)-measurable fiberwise Fourier modes of the same frequency \(\xi \), i.e. \(f_1(x) = \hat{f}_1(\xi, x) \), then the function \(f_1f_2 \) is constant along the fibers, i.e. invariant under the \(T^d \)-action, and at the same time \(A \)-measurable. By the ergodicity of the \(T^d \)-action on \((X, A, \mu)\). The function \(f_1f_2 \) is \(\mu \)-almost everywhere a constant. In particular, for every Fourier
mode, \(|f| = (f\hat{f})^{1/2}\) is \(\mu\)-a.e. constant. This shows \(f_2\) is a constant multiple of \(\frac{1}{f_2}\) and therefore \(f_1\) is a constant multiple of \(f_2\).

Denote by \(\Xi\) the set of \(\xi \in \mathbb{Z}^d\) for which non-trivial \(\mathcal{A}\)-measurable fiberwise Fourier modes exist. If \(f_1, f_2\) are now such modes for different frequencies \(\xi_1, \xi_2 \in \Xi\), then \(f_1f_2\) is such a Fourier mode for frequency \(\xi_1 + \xi_2\), and \(\frac{1}{f_1f_2}\) is such a mode for \(-\xi_2\). It follows that \(\Xi\) is a subgroup of \(\mathbb{Z}^d\). Let \(H = \ker \Xi\), then \(H\) is a closed subgroup of \(\Xi\) and the Pontryagin dual \(Y\) of \(\Xi\) is isomorphic to the compact quotient group \(T^d/H\).

For every \(\xi \in \Xi\), fix a non-trivial \(\mathcal{A}\)-measurable fiberwise Fourier mode \(\phi_\xi \in L^2(\mathcal{A}, \mu)\) of constant modulus 1. Because \(\Xi\) is a copy of \(\mathbb{Z}^p\) for some \(p \leq d\), one can do this first for a set of generators \(\xi_1, \ldots, \xi_p\), and then define \(\phi_\xi = \prod_{i=1}^p \phi_{\xi_i}^{n_i}\) for all \(\xi = \sum_{i=1}^p n_i \xi_i, n_i \in \mathbb{Z}\). This makes the \(\xi \mapsto \phi_\xi\) a group morphism. Given \(x \in X\), let \(y_x(\xi) = \phi_\xi(x)\). Then \(y_x\) is a group morphism from \(\Xi\) to \(\{u \in \mathbb{C} : |u| = 1\}\) for \(\mu\)-a.e. \(x\). In other words, \(y_x \in \widehat{\Xi} = Y\).

Since \(\phi_\xi\) is a fiberwise Fourier mode with frequency \(\xi\), by Lemma 3.4.2, \(y_{\xi(Tx)}(\xi) = \phi_\xi(Tx) = (T\phi_\xi)(x)\) is a fiberwise Fourier mode of frequency \(A^T\xi\) and modulus 1, and thus equals \(c_\xi \phi_\xi A^T\xi(x) = c_\xi y_x(A^T\xi)\) for a constant \(c(\xi)\) of modulus 1. Thus \(y_{\xi(T)} = c_\xi y_x(A^T\xi)\). Because both \(y_x\) and \(y_{\xi(T)}\) are multiplicative characters of \(\Xi\), it follows that \(c\) is also such a character; that is, \(c \in Y\). Furthermore, the transformation \(\Psi y \mapsto y \circ A^T\) is an automorphism of \(Y\). Hence \(y_{\xi(T)} = S(y_x)\), where \(S(y) = c\Psi(y)\) is an affine transform of the torus \(Y\).

To conclude, we need to show that \(\iota : x \mapsto y_x\) is an isomorphism between the measure spaces \((X, \mathcal{A}, \mu)\) and \((Y, \mathcal{B}_Y, \mathbf{m}_Y)\).

As \(\Xi\) is the Pontryagin dual of \(Y\), the continuous functions on \(Y\) are densely spanned by \(\{\tau_\xi : y \mapsto y(\xi) : \xi \in \Xi\}\). For each \(\tau_\xi, \tau_\xi \circ \iota\) sends \(x\) to \(y_x(\xi) = \phi_\xi(x)\), and is \(\mathcal{A}\)-measurable. Therefore \(\iota\) is measurable.

The family \(\{\tau_\xi : \xi \in \Xi\}\) forms an orthonormal basis of \(L^2(\mathbf{m}_Y)\). At the same time \(\tau_\xi \circ \iota = \phi_\xi\) is also an orthonormal family in \(L^2(\mathcal{A}, \mu)\). It follows that \(\tau \mapsto \tau \circ \iota\) is an isometric map from \(L^2(\mathbf{m}_Y)\) to \(L^2(\mathcal{A}, \mu)\). This guarantees that \(\iota_* \mu = \mathbf{m}_Y\).

It remains to show that \(\tau \mapsto \tau \circ \iota\) is surjective. In fact, for every \(f \in L^2(\mathcal{A}, \mu), \hat{f}(\xi, x)\) is a constant multiple \(a_{f, \xi} \phi_\xi(x)\) of \(\phi_\xi(x) = \tau_\xi \circ \iota(x)\) where \(\sum_\xi |a_{f, \xi}|^2 < \infty\). Hence \(f = \sum_\xi (a_{f, \xi} \tau_\xi) \circ \iota \in \iota^* (L^2(\mathbf{m}_Y))\), which shows \(\iota\) is an isomorphism between probability spaces. \(\square\)

Corollary 4.4.10. In the setting of Theorem 4.3.1, if \(T_0\) is \(K\)-mixing and \(T\) is weakly mixing, then \(T\) is \(K\)-mixing.

Proof. Let \(\mathcal{P} \subseteq \mathcal{B}\) be the Pinsker \(\sigma\)-algebra in \((X, T, \mathcal{B}, \mu)\). We show first
that \mathcal{P} is T^d-invariant, i.e. preserved by L_z for all $z \in T^d$. Because rational points are dense, it suffices to show this when $z \in \mathbb{Q}^d/\mathbb{Z}^d \subset T^d$. In this case, there exists n such that $A^k z = z$. Thus for $P \in \mathcal{P}$, $T^k \circ L_z = L_{A^k z} \circ T^n = L_z \circ T^n$. In other words, L_z is an automorphism of the measure preserving dynamical system $(X, T^n, \mathcal{B}, \mu)$, and must preserve the Pinsker σ-algebra of T^n, which is the same as that of T by Lemma 4.4.8.

Since $(X, T, \mathcal{B}_0, \mu) \cong (X_0, T_0, \mathcal{B}_0, \mu)$ is K-mixing, and (X, T, \mathcal{P}, μ) has zero entropy, by Lemma 4.4.4 and Theorem 4.4.5, for all $U \in \mathcal{P}$ and $V \in \mathcal{B}_0$, $\mu(U \cap V) = \mu(U) \mu(V)$. In particular, by letting $U = V$, we conclude that every $U \in \mathcal{P} \cap \mathcal{B}_0$ has measure 0 or 1. Remark that having $U \in \mathcal{P} \cap \mathcal{B}_0$ is the same as having a \mathcal{P}-measurable subset that is invariant under the T^d-action by translation. Thus T^d acts on \mathcal{P} ergodically.

By Proposition 4.4.9, the factor system (X, T, \mathcal{P}, μ) of (X, T, \mathcal{B}, μ) is isomorphic to $(Y, S, \mathcal{B}_Y, m_Y)$, where Y is a quotient torus Y of T^d, and S is affine automorphism. Because (X, T, \mathcal{B}, μ) is weakly mixing, so is S. Viewing Y as T^p where $p \leq d$, and write $S_y = c \Psi(y)$ where $c \in T^p$ and $\Psi \in GL(p, \mathbb{Z})$. On the one hand, because (X, T, \mathcal{P}, μ) has zero entropy, $h_{m_Y}(S) = 0$, and therefore all eigenvalues of Ψ are bounded by 1 in absolute value by Theorem 4.3.3. Since the determinant of Ψ is ± 1, in fact all the eigenvalues must have absolute value 1. Because the eigenvalues are algebraic units and always appear together with Galois conjugates, we conclude that Ψ only have roots of unity among its eigenvalues. On the other hand, since S is weakly mixing, by Theorem 4.4.1, the eigenvalues Ψ include no roots of unity. It then follows that $p = 0$ and Y is trivial.

We have thus proved the Pinsker σ-algebra \mathcal{P} is trivial modulo μ, which is equivalent to completely positive entropy. Hence T is K-mixing.

Corollary 4.4.10 is sufficient to produce Theorem 4.4.2.

Proof of Theorem 4.4.2. Again let T_j be the factor induced by T on $M_j = G/G_{j+1} \Gamma$, and \mathcal{B}_j be the Borel σ-algebra on M_j. Then $(M_0, T_0, \mathcal{B}_0, m_{M_0})$ is a trivial dynamical system whose Pinsker σ-algebra is trivial. So it should be regarded as K-mixing. Since T is weakly mixing, every T_j is also weakly mixing. By Corollary 4.4.10, if T_j is K-mixing, then so is T_{j+1}. By induction, $T = T_s$ is K-mixing.