Chapter 2

Lattices and nilmanifolds

In this chapter, we discuss criteria for a discrete subgroup I' in a simply
connected nilpotent Lie group G to be a lattice, as well as properties of the
resulting quotient G/T".

2.1 Haar measure of a nilpotent Lie group

The map exp is a diffeomorphism between the Lie algebra g of a simply
connected Lie algebra G and G itself. On both g and G there are natural
volume forms. On g, this is just the Euclidean volume denoted by m4. On
G, there is a natural left invariant measure, the left Haar measure, denoted
by m¢. The choices of myg and mg are unique up to a renormalizing factor.

Proposition 2.1.1. Suppose G is a simply connected nilpotent Lie group
and g is its Lie algebra. After renormalizing if necessary, the pushforward
measure exp, my coincides with mg.

Proof. Fix a filtration {g;};_, (for example the central lower series {g;})
and a Mal’cev basis X adapted to it. Since the left Haar measure is unique
to renormalization, it suffices to show that exp, my is invariant under left
multiplication. This is equivalent to that m is invariant under left multi-
plications in the group structure (g, ®).

On g, use the linear coordinates (1.16) determined by X. Then for
U=>"uXjand V=3, V;X;, W=U®V is given by the formula
(1.18). Thus the partial derivative in V of U ® V' can be written in block
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form as
Id « -+ %
Id *
Id

where the i-th block correspond to the v; component. Since the determinant
of this matrix is 1, the map V' — U ® V preserves the Euclidean volume my.
This completes the proof. ]

Observe that the partial derviative in U of U ® V has the same block
form as above, hence my is also right invariant in (g, ®). So we get:

Corollary 2.1.2. FEvery nilpotent Lie group G is unimodular, i.e. its left
and right Haar measures coincide up to rescaling.

Proof. If G is simply connected, the remark above asserts that mg =
exp, my is both left invariant and right invariant. This yields the unimod-
ularity as desired.

For a connected nilpotent Lie group G, its universal cover G is a Lie
group with the same Lie algebra g and hence, by Theorem 1.5.7, is nilpotent
as well. The left and right Haar measures of G coincide and descend to the
corresponding Haar measures on G, which still coincide (up to rescaling).

For a disconnected nilpotent Lie group G, let G° be its identity compo-
nent, which is still nilpotent and is thus unimodular. It suffices to note in
the case the product measure between the counting measure on G/G° and
mgo is both left and right invariant on G. O

Exercises

Exercise 2.1.1. Describe the Haar measure of the group of upper triangular
unipotent d x d matrices.

Exercise 2.1.2. Show that for d > 2, the group of upper triangular d x d
matrices with positive diagonal entries is not unimodular.

2.2 Lattices

Definition 2.2.1. Given a connected Lie group G, a discrete subgroup I' C
G is called a lattice if the quotient G/T' admits a finite measure that is left
mwvariant by elements of G.
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Lemma 2.2.2. If G has a lattice, then G is unimodular.

Proof. Because I is discrete, one can lift the left invariant meaure mg,r to
a left invariant measure mg by making the projection G — G/I" a locally
volume preserving map. For every h € G, (Ry,).mg is also left invariant,
where Rj, is the right multiplication by h. Because left Haar measure is
unique up to rescaling, (Rp).mg = x(h)mg for a function x : G — Rso.
Note that x is a group morphism into the multiplicative group Rsq. Since
the lifting is equivariant under the deck transformation group I', I' C ker y.
The pushforward p of mgp from G/I' to Rso by g — x(g) is invariant
under multiplication by x (k) for every k € G. Unless x = 1, which means
mg is also right invariant, the measure u on R~ in invariant under multi-
plicationby A for some A > 1. Such a measure cannot have finite totall mass,
though 1(R~0) = mg,r(G/I') < oo. This yields a contradiction. Hence mg
is right invariant and G is unimodular. O

Example 2.2.3. Z" is a lattice of R™.

Hereafter, G will be assumed to be a simply connected nilpotent Lie
group. We will identify G with its Lie algebra g via the exponential map
exp. Using this identification, the group structure can be thought of as
(g, ®) where ® is from (1.11). We remark that:

Proposition 2.2.4. Every simply connected nilpotent Lie group G is an
algebraic group.

That is, using the linear coordinates (1.16) of g, G is identified with the
affine algebraic variety! g = R™ and the group operations, which are the
multiplication ® and the inversion X — — X, are polynomial.

Since every connected closed subgroup H is identified with its Lie algebra
b, which is a subspace of g. It is clear that:

Lemma 2.2.5. In Proposition 2.2.4, every connected closed subgroup is a
Zariski closed algebraic subgroup.

The main result of this section is:

Theorem 2.2.6. Let G be a simply connected nilpotent Lie group endowed
with the algeraic structure of its Lie algebra g, and I' C G be a discrete
subgroup, then the following are equivalent:

! Algebraic subvarieties of g are the zero sets of finite arrays of polynomial equations.
They are the closed subsets of a topology, the Zariski topology.
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(1) T is a lattice;

(2) T is Zariski dense;

(3) T is not contained in any proper connected closed subgroup of G;
(4) exp~ T is not contained in any proper vector subspace of g.

(5) T is cocompact, i.e. G/T' is compact.

Proof. We shall show (5)=-(1)=(2)=-(4)=(3)=(2)=-(5).

(5)=-(1). Because G is unimodular by Corollary 2.1.2, there is a bi-invariant
Haar measure mg, which projects to a measure mg,r on G/I' by right
invariance. Moreover mg r inherits the left invariance property.

The compactness of G/T" means that there is a compact set Q2 C G such
that (J,cp @y = G. Then mg/r(G/I') < mg(2) < co. So I is a lattice.

(1)=(2). Let H be the Zariski closure of I, i.e. the smallest closed algerbaic
subvariety of G containing I'. Then as a standard fact about topological
groups, H is a subgroup of G. (Exercise 2.2.1)

Let H be the identity component of H in Zariski topology. Then H? is
a subgroup of H and has finite index. Since every Zariski connected closed
subvariety is connected and closed in the usual Hausdorff topology. H is
a connected closed subgroup of G. By Lemma 1.5.16, H = H%. In other
words, H is Zariski connected and connected. By Theorem 1.1.18, H is a
Lie subgroup, whose Lie algebra is b := exp~! H. Assume for contradiction
that H C G, then h C g.

Let g(2) = [g, g] be the commutator subalgebra of g and G(3) = exp g(2)-
Then g(9) is an ideal and G|y is a connected closed normal subgroup of G.
Because of normality, HG ) is a subgroup of G, which is again connected
and closed and hence a Lie subgroup. Its Lie subalgebra is § + g(2). By
Lemma 1.4.12, h + g2 # g as h # g. So HG 9y = exp(h + g(2)) is a proper
subgroup of G. Moreover, ) + g(2) is an ideal of g, because

9, +92)] Clg,08] =92) CSh+90)

Thus HG(y) is a normal subgroup in G by Lemma 1.5.4.

Consider the quotient group G/ HG ), which is non-trivial by the para-
graph below, abelian as it is a quotient of G//G(9), which is abelian, and
simply connected by Corollary 1.5.14. Thus there exists d > 1 such that
G/HG 3 is isomorphic to R? as a group.

Take the pushforward measure y = 7vmg,r on G/(HG(9)) = R? by the
map 7 : g — gHG ). (Note that 7 is well-defined on G/T" since I' C HG y).)
Then g has finite volume and is invariant under left translations, which is
impossible on R%. The desired contradiction is hence obtained.
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(3)=(2). Again, let H be the Zariski closure of I'. Then as above, H must
be a connected closed subgroup of G. So by assumption, H = G, which
means that I' is Zariski dense in G.

(2)=(4). This implication is obvious because the Zariski topology of G is
inherited from that of g via exp, and a proper vector subspace is a proper
algebraic subvariety.

(4)=(3). If I' C H for a proper connected closed subgroup H of G, then
exp ' T C b, which is a proper vector subspace of g.

(2)=(5). We prove by induction in the step of nilpotency. Suppose G is
1-step nilpotent, i.e. an abelian Lie group. Then G is isomorphic to R? for
some d. Since I' is a discrete subgroup, which (by the implication (2)=(3)
above) is not contained in any proper vector subspace, it must be isomorphic
to a discrete embedding of Z¢ into R?. In this case, G/T' = T is compact.

Now assume the implication is known for all steps of nilpotency up to
s — 1, where s > 2.

Recall that Gy = exp g(o) is the closure (in the usual topology) [G, G]
of the group generated by all commutator elements ghg~'h~! by Corollary
1.5.11. The discrete subgroup [[',T'] € T'N G 9y generated by {yny~tn~t:
7v,n € I'} is hence Zariski dense in G/(9) (since the Zariski topology is weaker
than the usual topology). Because G/(y) has step of nilpotency s — 1, by
inductive hypothesis, [I',I'] is a cocompact lattice in G(9). In consequence,
the intermediate group I'(z) = I' N G(y) is also a cocompact lattice in G y).

The quotient I'/T'(9) naturally sits in G/G o) as a subgroup. We shall
show that it is discrete in the induced topology of G//G (). This is equivalent
to the statement that if for a sequence 7, € I', v,I'(9) = e in G/G(9) then
Yn € G2y for sufficiently large n.

The convergence to identity in G /G o) means that there is a sequence
€, — e in G, such that ~, € enG(g), ie. dg, € G(Q) such that v, = €,gn.
By cocompactness of I'(9), g can be written as hyS3, where 3, € I'(5) and
h, belongs to a given compact subset 2 C G(2). Thus v, = €,hnfFn.

Because ¢, and h, are precompact sequences, v,3, ' = e,h, fall into
a given compact set ' € G for all n. On the other hand, 7,3, ! is from
the discrete subgroup I'. In particular, there are only finitely many possible
values of 7,8, € &' NT. So Tl'(2) = vnﬁ,;lI’(Q) can only assume finitely
many possible values. Thus the convergence of this sequence to the identity
in G/G ) forces it to eventually assume the identity value. This proves the
discreteness of I'/T ().

Remark now that G /G ) is abelian and also simply connected by Corol-
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lary 1.5.14. So G/G 9y = R? for some d. Moreover, ['/T(9) is a discrete
subgroup that does not belong to any proper connected closed subgroup
H C G/G(y), since otherwise I' would belong to the preimage of H, which
is a proper connected closed subgroup of G. By the s = 1 case, ['/T'(y) is
cocompact in G/G(9).

We conclude the proof by noting that G/T" is a continuous fiber bun-
dle over (G/G(2))/(T'/T(2)) whose fibers are isomorphic to G z)/T'(9). It is
compact because both the base and the fibers are compact. O

Example 2.2.7. Consider the 2n + 1 Heisenberg Lie group Ha,4+1 from
Example 1.5.13. The discrete subset I' = {(x,y,2) : x,y € Z",z € Z}
is closed under the group operations and hence a discrete subgroup. As an
algebraic group, Ha, 1 has the Zariski topology of the underlying R?"*! (see
Exercise 1.5.2). Moreover, I' = Z?"*1 is Zariski dense. (this fact comes from
application of Theorem 2.2.6 to the abelian Lie group R?"*!. By Theorem
2.2.6, T is a lattice.

From Theorem 2.2.6 we can deduce the following more detailed charac-
terization of lattices.

Corollary 2.2.8. In the setting of the Theorem 2.2.6, for all index pairs
1<j<i<s, I'NG and (TN Gyy)/ (T NG,y are respectively lattices in

Here s is the step of nilpotency.

Proof. Similar to the proof of the implication (2)=(5) of 2.2.6, one can show
that I';;y = ['NGy;) is Zariski dense in G(;), and thus a cocompact lattice by
the theorem.

If j < i, then ') /T is naturally identified with a subgroup of G'(;)/G .
Again, the same proof as for the implication (2)=(5) of the theorem applies
here and shows this subgroup is discrete. It is then a lattice because property
(3) of Theorem 2.2.6 passes from I'(;) to I'(;)/T;). O

Exercises

Exercise 2.2.1. Let G be the group

1 * 1 % x
1 = X 1 x| 7,
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prove that the subset

1 @1 +29vV2 21+ 20V2 1 @1 —29V2 21— 22V2
1 v +12v2 |, 1 Y1 — y2v/2
1 1

1 T1,Y1,21,22,Y2,22 € Z}

is a lattice.

2.3 Rationality of lattices

The algebraic group structure of a simply connected Lie group G is pre-
scribed by the structural constants with respect to a Mal’cev basis X. The
existence of a lattice has consequences about these constants.

Theorem 2.3.1. A simply connected nilpotent Lie group G admits a lattice
I if and only if its Lie algebra g has a Mal’cev basis X (adapted to some
filtration) with respect to which the structural constants are in Q.
Moreover, in this case the basis X can be chosen such that the preimage
exp ' T consists of rational vectors in the coordinate system given by X.

Proof of the “only if” part. Assume I is a lattice. We use the lower central
series filtration {g(i)}fill and set G(;) = exp g(;), L'jy = N Gy).

By Corollary 2.2.8, I'(;)/T'(41) is a lattice in G(;)/G ;1) for every index
i. Since the later is an abelian Lie group, it identifies with its Lie algebra
9(i)/9@i+1) as a group (with exp being the identity map). I';;)/I'(41) can
be regarded as a lattice in the vector space g(; / 9it1) = R%  and we can
choose a Z-basis Viy—m;+1," "+, Vin—m,,, of this lattice. Here d;, m, and m;
are defined as in §2.1.

For all m —m; +1 < j < Vi, ,, one can choose v; € I';) such that
YL (i41) is identified with V;. Write X; = exp! Vj € 9(;)- Performing this

for all the indices 1 < i < s, we obtain a collection X = {Xy,---, X,,,}. It
will be shown that X is a Mal’cev basis with rational structural constants.
To show & is a Mal’cev basis, it suffices to know X,y 41, -, Xin—miy1

project to a basis of g(;)/g(;4+1)- Indeed, X; projects to V; thanks to the
commutative diagram (1.14), and the claim follows. So it remains to show
the rationality of the structural contants.

It will be shown by induction for all indices 1 < i < s that:
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Claim 2.3.2. (1) There exists a positive integer Q;, such that for all 1 <
a<m,m-—m;+1<B<mandm-—mi1+1< 5 < m, the structural
constant c},g in (1.15) is in Q; 'Z.

(2) Ty is generated by {y; : m—m;+1 < j <m}. Indeed, everyy € I'y;

can be written as v:nm;:] ]ﬁ “ Y for integers Tim—m;41, s Tm-
(8) In addition,
m
exp_l F(z) - @ Q;IZXJ (21)

j=m—m;+1

The base case is ¢ = s. In this case there are no structural constants to
consider since mgs;1 = 0. Hence part (1) of the claim is empty. In addition,
L) = ['(s)/L(s41) is identified, via the exponential map, with the lattice
generated by Xpm—m,+1 = Vi—m+1, -+, and X = Vi in g(g) = 95)/9(s41)-
So part (2) is true.

We now assume that the claim is known for index ¢+ 1. Then the vector
Y = exp_l('Yonﬂ'Ya_lfy/@_’l) is in @T:m—mi+1+1 Q;_llZXu-

By Corollary 1.1.13, Ad., X5 = exp (727575 ") and thus equals Y ©
Xp. In particular, Ad,, X3 —Y — Xj is a finite linear combination, with
coefficients from P~!Z, of repeated Lie brackets that only involve Y and
Xp. Here P is a positive integer depending only on the step of nilpotency
s. Note that each repeated Lie bracket can have at most s — ¢ layers.

Because of inductive hypothesis, one sees that every intermediate Lie
bracket, and hence eventually every term in the linear combination, is in
P Q_(S_HI)ZXJ-. Hence, after taking coefficients into account

Jj=m—m;yo+1 ¥it1
and adding Y, we obtain that

(Ady, -I)Xse P PR zx,. (2.2)

Jj=m—m;q1+1

Next, consider the Lie bracket
[Xa, Xp] = adx, Xg = (exp™ ! (Adexp x,)) (Xp) = (exp™ ' (Ad,,))(Xp).

Here Ad,, is regarded as an element of the linear group GL(g), and
exp '(Ad,,) is the series Y o0, (=) (Ad,, —Id)". (This requires some

n
justification, see Exercise 1.4.5.) Recall that (Ad,, —Id)* = 0 by Corollary
1.5.15. Hence the series at hand becomes a finite sum and ends at index

n=s—1.
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Because (2.2) hold for all 1 < o/ < mand m —m; +1 < ' < m, it
follows by iteration of this fact that

m

(Ad,, —1)"Xse P (P~ 1 iyl

J=m—mit1+1

for every n < s — 1. So we conclude that

m

XaXsle @ (s-D) P zx,.

j=m—m;t1+1

This proves part (1) in Claim 2.3.2 for level i with Q; = (s — 1)!P*~'Q; ]

On the other hand, suppose n € I'¢;) then nl'(;;1) can be viewed as an
element of the lattice generated by Vi —m;+1, - Vin—m,.,. Recall for each
of these Vj is identified with the corresponding equivalence class v;T'(;41) =
(exp X;)T'(i41). Therefore, one can find integers r; for each m —m; +1 <
J < m — m;yq such that

ne eXp(Tm—mi—l—le—mi—i—l) e exp(rm—mi+1 Xm—mi+1)r(i+1)‘

By induction, part (2) of the claim is established.
Moreover, by part (3) of the claim with index ¢ + 1, there is Z €
@;” 141 QzﬂZX such that
n= exp(rm—mi—i-le—mi—‘rl) o 'eXP(Tm—miH Xm—mprl) eXp Z.

Applying Baker-Campbell-Hausdorff formula, one see that exp~! 7 is a
rational linear combination, with coefficients from P*(S*i)Z, of Xp—m;+1,
+, Xin—mg41» £ and iterated Lie brackets among them. Here every iterated
Lie bracket has at most s—i layers, and P = P(s) is the same positive integer
as before.
Since Z € ®sz—mi+1+1 Q;hZXj and Q;|Q;+1, it follows from part (1)

that exp~'n € @?:m_m#l P_(S_i)Qi_(s_iH)ZXj. This inductively proves

part (3), after redenoting P(s_i)Qgs_iH) by Q;.

In summary, we have established inductively Claim 2.3.2.

In particular, the “only if” part of Theorem 2.3.1 is covered by the ¢ = 1
case. O

Proof of the “if” part. Assume now with respect to a filtration {g;}; " TH and
a Mal’cev basis X = {Xy, -, X,,,} adapted to it, the structural constants
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are rational. Since there are only finitely many structural constants, there
is @ € N that every structural constant cg 5 isin Q7.

Let s be the step of nilpotency of G. Then the Baker-Campbell-Hausdorff
formula is a rational linear combination of finitely many terms, each of which
has at most s layers of Lie brackets. By modifying ), we may assume that
all coefficients are also in Q™ 'Z.

Let A =D, Q"1ZX;. We claim T' = exp A is a lattice of G.

We first need to confirm that I' is a subgroup, or equivalently A is closed
under the group multiplication ® and the inversion X — —X on g. The
inversion part is obvious. For the multiplication, let X,Y € A. Then X @Y
is a finite sum of terms from Q*"*VZ(X, ® Xj3). It suffices to prove each
such term is in A.

Indeed, X, ® X3 us a finite sum of terms in the form

b[Y1, [Yo, -+, [Va, Yiga] - -]

where 0 < t < r and b € Q7 'Z, and every Y; is either X, or Xg. it
suffices to show that each of such terms is in Q 2"tV A = D, Q- rtVzX;.
By iteration of (1.15) over at most ¢ levels of brackets, the repeated Lie
bracket above is in 377", Q'X; C @/, Q"ZX;. After multiplying by
b € Q'Z, every term is in EB;”Zl Q™ *+VZX;. We conclude that T is a
discrete subgroup of G.

Furthermore I' is Zariski dense of G because the Zariski topology of G is
given that of g via the exponential map. In these coordinates I' is represented
by A, which is a cocompact lattice of the vector space g (with respect to the
group rule + instead of ®) and hence Zariski dense by Theorem 2.2.6. So
by another direction of Theorem 2.2.6, I' is a lattice. 0

Part (2) from Claim 2.3.2 can be reformulated as follows

Corollary 2.3.3. Fvery lattice in a simply connected nilpotent Lie group
is finitely generated. In fact, in Theorem 2.3.2 the Mal’cev basis X can be
chosen so that T' is generated by {exp X; : 1 < j < m}.

Theorem 2.3.1 actually provides a coordinate system on G that is defined
over Q, such that all group operations are given by polynomials with ratio-
nal coefficients. In terminologies of algerbaic geometry, a simply connected
nilpotent Lie group that admits a lattice is an algebraic group defined over
Q. This in fact asserts that I' uniquely determines a Q-structure on the
algebraic group G.allows us to define the rational points in G.



CHAPTER 2. LATTICES AND NILMANIFOLDS 42

Definition 2.3.4. Suppose I is a lattice in a simply connected nilpotent Lie
group G. An element g € G (resp. X € g) is rational if exp~lg (resp.
X)) belongs to @, QX;, where X = {X1,---, Xon} is a Mal’cev basis such
that exp ' T C @Tzl QX;. We will denote respectively by Gg and gg the
rational elements of G and g.

A legitimate question is whether the definition above depends on the
choice of X. The answer is no, as demonstrated by the following lemma.

Lemma 2.3.5. Let X be a Mal’cev basis. If the Q-span @Tzl QX contains
a lattice exp™ ' T, then it is also the Q-span of exp ' T'. In particular, an
element g € G (resp. X € g) is rational if and only if exp~1 g (resp. X € g)
is in the Q-span of exp ' T.

Proof. Suppose otherwise, then exp™!I' is contained in a proper Q vector
subspace in @Tzl QX;. The R-span of this subspace is a proper subspace
of g. This contradicts the Zariski density of T. O

Definition 2.3.6. We say a Mal’cev basis X is rational if it is as in 2.3.5,
or equivalently, if X C gq.

Proposition 2.3.7. If I' is a lattice in a simply connected nilpotent Lie
group G, then there are two lattices A, A_ in the vector space g, such that
A_Cexp T C Ay

Here A1, A_ are lattices in the sense of the usuall additive group struc-
ture.

Proof. The existence of A is contained by Claim 2.3.2.(3). We will con-
struct A_.

We keep the notations from the proof of the “only if” direction of The-
orem 2.3.1 and follow the steps there to define the rational Mal’cev basis X
adapted to the lower central series filtration {g(;};_;. By the proof of the
“if” direction of that same theorem, there is a positive integer R such that
exp(DjL; RZX;) is a lattice T of G. The collection X = {RX1, -+, RX,,}
is also a Mal’cev basis adapted to {g(;};—;. Moreover, by diagram (1.14),
exp_l(f(i)/f(j)) is the lattice generated by RXy 11, -, RXy—m,,, in
9(i)/9(@i+1)- Then Claim 2.3.2 shows that I and I are respectively generated
by {expX;,: 1 < j < m} and {exp(RXj),: 1 < j < m}. In particular,
I C T because exp(RX;) = (exp X;)%. Therefore for A_ = @, RZX;,
A_=exp! I C exp T, O
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This allows to give a more intrinsic definition of rational elements of G.

Corollary 2.3.8. An element g € G is a rational element if and only if
there exists n € N such that g" € T'.

Proof. Suppose g" =y € I'. Then exp™tg = %exp_1 ~ is a rational vector,
and thus ¢ is a rational element.

Conversely, suppose g is rational, then g = exp X for a rational vector
X € go. Let A_ be as in Proposition 2.3.7. As A_ is a rational lattice in gg,
there exists n such that nX € A_. Thus ¢” =exp(nX) cexpA_CI. O

Definition 2.3.9. Suppose G is a simply connected nilpotent Lie group ad-
mitting a lattice I'. A connected closed subgroup H of G is rational if its Lie
algebra b is a rational subspace with respect to a rational Mal’cev basis X .

Lemma 2.3.5 shows that the rationality of H does not depending on the
choice of X.

Corollary 2.2.8 can be generalized to more subgroups.

Proposition 2.3.10. Suppose G, I' are as above and H is a connected
closed subgroup of G.

(1) H is rational if and only if I' N H is a lattice in H.

(2) If H is a connected rational closed normal subgroup of G, then I'/(I'N
H) is a lattice in G/H.

Proof. (1) Suppose H is a connected rational closed subgroup , then b is
a rational subspace in the coordinates given by X. Hence the intersection
ho = hNgg is dense in h. Let A_ be as in Proposition 2.3.7. Then for
every X € hq, there is n € N such that nX € A_. In particular, b has a
linear basis consisting of elements of A_ C exp~'T". So exp~*(I' N H) is not
contained in any proper subspace of fj. By Theorem 2.2.6, this implies that
I'N H is a lattice in H.

Conversely, if I' N H is a lattice in H. Then b is linearly spanned by
exp '('NH) Cexp ' T C gg- Thus b is a rational subspace of g and H is
rational.

(2) For a connected rational closed subgroup H, knowing that I' N H
is a lattice in H is sufficient for applying the same argument in the proof
of implication (2)=(5) in Theorem 2.2.6 to show the second part of the
statement. O

The proposition, together with Corollary 2.2.8 implies:
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Corollary 2.3.11. In Corollary 2.2.8, the subgroups Gy, 1 < i < s are
rational.

Exercises

Exercise 2.3.1. Does every simply connected nilpotent Lie group has a
lattice?

Exercise 2.3.2. Show that: in a simply connected nilpotent Lie group G
with a lattice I', if H is a rational connected closed subgroup of G then so
is the normalizer Ng(H).

2.4 Nilmanifolds

Definition 2.4.1. A compact nilmanifold is the quotient G /T of a simply
connected nilpotent Lie group by a lattice I.

By Theorem 2.2.6, such a quotient is indeed compact. Moreover, because
of the discreteness of I', G/I" is a manifold.

In a more general definition, a nilmanifold space is a manifold that admits
a transitive action by a simply connected nilpotent Lie group G. In other
words, a nilmanifold is a homogeneous space of the form G/H where H is a
closed subgroup. A theorem of Mal’cev | | asserts that if a nilmanifold
is compact, then it has the form of Definition 2.4.1.

Definition 2.4.2. A compact infranilmanifold is a manifold finitely cov-
ered by a compact nilmanifold.

Example 2.4.3. The torus T¢ = R?/Z? is a compact nilmanifold. The
Klein bottle is a compact infranilmanifold as it is double covered by T2.

Suppose M = G/I' is a compact nilmanifold. From now one denote
F(l) = FﬂG(i). Then the quotients G(z)/r(z) and G/G(l)l“ = (G/G(Z))/(F/F(l))
are also compact nilmanifolds. More generally, suppose {g;};_, is a filtration
of g such that each g; is a rational subspace of g. Denote G; = expg; and
I'i = I'N G;. Then by Proposition 2.3.10, G;/I'; and G/G;I'; are compact
nilmanifolds. Moreover, there is a chain of natural projections

G/I'=G/Gral' - G/G, T — --- — G/G1I" = {pt}. (2.3)

Furthermore, as {g;};>; is a filtration of g;, for every j > ¢, I'; /T'; is a lattice
in G;/Gj, and G;/G;T; = (G;/G;)/(I';/T;) is a compact nilmanifold.
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Note that when j = i + 1, G;/G;41 is a simply connected abelian
Lie group and thus isomorphic to R%. Two points z,2’' in G/Gi I =
(G/Git1)/(T'/Ti41) have the same projection in G/G,I if and if there is an
element h € G;/G;11 such that 2’ = hz. In other words, the preimage in
G/Gi41T of every y € G/G;T" is an orbit of the abelian subgroup G;/Gi+1
of the simply connect nilpotent Lie group G/G;1.

Furthermore, for all x and h as above, hx = x if and only if there is f €
G/Git1 and n € T'/T;41 such that x = fT';41 and hf = fn. Because [g, g;] C
9i+1, h € G;/Git1 is in the center of G/G;y1. Therefore fh = hf = fn, or
equivalently h = n € I'/T';11. Therefore h € G;/Git1 NT/Tiy1 = Ti/Tita.
In otherwords, the stablizer of € G/G;41T is (I';/T'i4+1), which implies the
preimage 7~ 1(y) in G/G41T of every y € G/G;T' is homeomorphic to the
compact quotient (G;/Git1)/(Ii/Tit1). Note that this quotient is actually a
compact abelian group isomorphic to T% = R% / 7% . The action by G; /Git1
on G/Gi41I degenerates into a free action of (Gi/GiJrl)/(Fi/FiH), and
every orbit is the preimage of a point in G/G;T.

In particular, the quotient G/G2I' and G4 /T () are both tori, respec-
tively isomorphic to T% and T9%. They are respectively a factor and a
subset of G/T", and are repsectively called the horizontal torus and verti-
cal torus of G/T. They will play important roles in the study of dynamics
on G/T.

Definition 2.4.4. A fiber bundle is a tuple (X, B, F,7), where X, B, F
are a topological space and m: X — B is a continuous surjective map, such
that there is an open covering {U}yey of B, and for every U, there is a
homeomorphism ¢y : U x F — 7 YU) such that the following diagram
commute:

UxF 2, »=1(U)

|7 |~ (2.4)

v 4,y

where my is the projection from U X F to U.
The spaces B and F' are respectively called the base and fiber of X.

Definition 2.4.5. For a topological group G, a left principal G-bundle is
a fiber bundle (X, B,m) equipped with a continuous free left G-action of X
that preserves the fibers and acts transitively on each of them.

In this case, the fiber of X is homeomorphic to G.
The discussion we had earlier in fact says:
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Proposition 2.4.6. Suppose I is a lattice in a simply connected nilpotent
Lie group G, and {g;}]_, is a filtration of g consisting of rational subspaces
of g (with respect to the Q-structure determined by I'). Then, with nota-
tions above, G has the structure of a tower of principal torus bundles given
by (2.3), where G/G;1I is a principal (G;/Git1)/(I'i/Ti+1)-bundle over
G/G,T.

Example 2.4.7. Suppose G = Ha,+1 and I' are respectively the Heisenberg
Lie group and the lattice I' from Example 2.2.7. Then Gy = {(0,0,2) :
z € R} 2 R and I'igy = {(0,0,2) : z € Z} = Z. The quotient G/G(y)
is parametrized by {(x,y) : x,y € R"} = R?", and its lattice [/T ) is
identified with {(x,y) : x,y € R"} = T?". Thus the projection G/T" —
G/G T gives the compact nilmanifold G/T' the structure of a principal
T!-bundle over T?".

Exercises

Exercise 2.4.1. Show that the 2n + 1 dimensional Heisenberg nilmanifold
from Example 2.4.7 is also a T"*!-fiber bundle over T", but this bundle
structure is not a principal one.

Exercise 2.4.2. Show that a G-bundle is a left principal bundle if and only
if there exist open charts {U }reys and homeomorphisms ¢ as in (2.4), such
that for each non-empty intersection U NV, U,V € U, the transition map
ot oy : (UNV)x G — (UNV) x G has the form (z,9) — (z,h(z)g)
where h is a continuous map from U NV to G.

Exercise 2.4.3. Describe the transition maps in Exercise 2.4.1.



	Lattices and nilmanifolds
	Haar measure of a nilpotent Lie group
	Lattices
	Rationality of lattices
	Nilmanifolds


