Math 603 Final

December 20, 2019

- Please respond to parts A and B on separate sheets of paper.
- Do any seven of the eight problems on the exam. Clearly state which problem number you are skipping at the top of your solutions to part B.
- Write your name on every sheet of paper you are submitting.
- Give and use definitions from the book or from class.
- You may use any results you remember from the book or from class as long as they are more basic than the result you're asked to prove.

Part A

- 1. State the Harnack's inequality theorem.
- 2. Let U be an open bounded domain, and let $f: U \to \mathbb{R}$ and $g: \partial U \to \mathbb{R}$. Show that there is at most one solution in $C^2(U) \cap C(\overline{U})$ to

$$-\Delta u = f \text{ on } U,$$

 $u = q \text{ on } \partial U.$

Part B

- 3. Let $U \subset \mathbb{R}^n$ be open.
 - (a) State what it means for a function $u: U \to \mathbb{R}$ to be weakly differentiable with respect to x_i $(1 \le i \le n)$.
 - (b) Show that the function u(x) = 1 |x| is weakly differentiable on U = (-1, 1).
- 4. State the definition of the Sobolev spaces $W^{k,p}(U)$ and the Sobolev norms $\|\cdot\|_{W^{k,p}(U)}$ for $k \in \mathbb{N}_0$ and $p \in [1, \infty]$.
- 5. Let $U \subset \mathbb{R}^n$ be open and bounded with C^1 boundary, and let $u \in W^{1,1}(U)$. Use the trace inequality to show that if there exists a sequence $\{u_j\}_{j=1}^{\infty} \subset C_c^{\infty}(U)$ satisfying $\lim_{j\to\infty} \|u_j u\|_{W^{1,1}(U)} = 0$, then the trace of u on ∂U is 0.

6. Let $U \subset \mathbb{R}^n$ be open, and let $u \in L^2(U)$. Show that $u \in H^1(U)$ if and only if there exists a constant C > 0 such that for each $j = 1, 2, \ldots, n$,

$$\left| \int_{U} u \frac{\partial \phi}{\partial x_{j}} dx \right| \leq C \|\phi\|_{L^{2}(U)}, \quad \forall \phi \in C_{c}^{\infty}(U).$$
 (1)

7. Let $U \subset \mathbb{R}^n$ be open and bounded, and let $f \in L^2(U)$. Write down a weak formulation of the problem

$$-\Delta u + u = f$$
, in U ,
 $u = 0$, on ∂U ,

and show that it has a unique weak solution.

8. Let $U \subset \mathbb{R}^n$ be open and bounded with C^1 boundary. Show that if n=3 and $f \in L^{6/5}(U)$, then the map

$$\ell: H^1(U) \to \mathbb{R}$$

$$v \mapsto \int_U fv \, dx$$

is a bounded linear functional on $H^1(U)$. (Hint: Use a Sobolev inequality.)