Math 5051 Final December 14, 2018 | Name: | | | |-------|--|--| | | | | - Use the back of the previous page for scratchwork. By default, I won't grade the scratchwork, so you can write wrong things there without penalty. - If you run out of space on the printed page and need more space, then use the back of the previous page, but make sure to: - Make a note on the printed page that your work continues on the back of the previous page. - On the back of the previous page, put a box around the work that you want graded. - Give and use definitions from the book or from class. - You may use any results you remember from the book or from class as long as they are more basic than the result you're asked to prove. - 1. Let (X, \mathcal{M}, μ) be a measure space. Let f_n and f be complex-valued measurable functions. - (a) (2 points) Define what it means for f_n to converge to f in L^1 . (b) (3 points) Define what it means for f_n to converge to f in measure. (c) (5 points) Show that if f_n converges to f in L^1 , then f_n converges to f in measure. (d) (5 points) Give and justify an example of functions f_n and f such that f_n converges to f in measure but f_n does not converge to f in L^1 . - 2. Let (X, \mathcal{M}, μ) be a measure space. Let f_n and f be complex-valued measurable functions. - (a) (3 points) Define what it means for f_n to converge to f almost uniformly. (b) (2 points) State Egoroff's Theorem. (c) (5 points) Egoroff's Theorem fails when $X = \mathbb{R}$, $\mathcal{M} = \mathcal{B}_{\mathbb{R}}$ is the Borel σ -algebra, and $\mu = m$ is Lebesgue measure. Provide a counterexample to Egoroff's Theorem in this context. That is, give and justify an example of functions f_n and f on \mathbb{R} for which Egoroff's Theorem fails to hold. - 3. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be measure spaces. - (a) (3 points) Define the product σ -algebra $\mathcal{M} \otimes \mathcal{N}$ on $X \times Y$. (b) (12 points) State the Fubini and Tonelli Theorems. - 4. Let (X, \mathcal{M}) be a measurable space. - (a) (3 points) State the Hahn Decomposition Theorem (b) (2 points) State the Jordan Decomposition Theorem - 5. Let (X, \mathcal{M}) be a measurable space. Let μ be a positive measure, and let ν be a signed measure. - (a) (3 points) Define mutual singularity. (b) (2 points) Define absolute continuity. (c) (5 points) State the Lebesgue-Radon-Nikodym Theorem. - 6. Let (X, \mathcal{M}) be a measurable space. - (a) (10 points) Let μ be a positive measure, and let E_j be a sequence of measurable sets. Assume that $\sum_{j=1}^{\infty} \mu(E_j) < \infty$. Show that $\mu(\limsup E_j) = 0$. Recall that $\limsup E_j = \bigcap_{n=1}^{\infty} \bigcup_{j=n}^{\infty} E_j$. (b) (15 points) Let μ and ν be positive measures. Show that $\nu \perp \mu$ if and only if there exists a sequence E_j of measurable sets such that $\mu(E_j) \to 0$ and $\nu(E_j^c) \to 0$ as $j \to \infty$. Hint: Construct a subsequence of the E_j so that you can apply part (a). - 7. Let (X, \mathcal{M}, μ) be a finite measure space. Let \mathcal{N} be a sub- σ -algebra of \mathcal{M} , and let ν be the restriction of μ to \mathcal{N} . - (a) (10 points) Given a \mathcal{M} -measurable function $f \in L^1(\mu)$, show that there exists an \mathcal{N} -measurable function $g \in L^1(\nu)$ such that $\int_E f \, d\mu = \int_E g \, d\nu$ for all $E \in \mathcal{N}$. This function is called the *conditional expectation* of f on \mathcal{N} . Let X be the finite set $\{1, 2, 3, 4, 5, 6\}$, let $\mathcal{M} = \mathcal{P}(X)$ be the power set of X, and let μ be counting measure. Let $f: X \to \mathbb{R}$ be defined by f(n) = n. (b) (5 points) Explicitly write down the function g constructed above if \mathcal{N} is the σ -algebra $\{\emptyset, X\}$. Make sure that g is \mathcal{N} -measurable. (c) (5 points) Explicitly write down the function g constructed above if \mathcal{N} is the σ -algebra $\{\emptyset, \{1,3,5\}, \{2,4,6\}, X\}$. Make sure that g is \mathcal{N} -measurable. | Question | Points | Score | |----------|--------|-------| | 1 | 15 | | | 2 | 10 | | | 3 | 15 | | | 4 | 5 | | | 5 | 10 | | | 6 | 25 | | | 7 | 20 | | | Total: | 100 | |