Math 5051 Final

December 14, 2018

Name:

e Use the back of the previous page for scratchwork. By default, I won’t grade the scratchwork,
so you can write wrong things there without penalty.

e If you run out of space on the printed page and need more space, then use the back of the
previous page, but make sure to:

— Make a note on the printed page that your work continues on the back of the previous
page.
— On the back of the previous page, put a box around the work that you want graded.

e Give and use definitions from the book or from class.

e You may use any results you remember from the book or from class as long as they are more
basic than the result you’re asked to prove.
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1. Let (X, M, u) be a measure space. Let f, and f be complex-valued measurable functions.

(a) (2 points) Define what it means for f, to converge to f in L.

(b) (3 points) Define what it means for f, to converge to f in measure.

(c) (5 points) Show that if f, converges to f in L!, then f, converges to f in measure.

(d) (5 points) Give and justify an example of functions f,, and f such that f, converges to f
in measure but f,, does not converge to f in L.
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2. Let (X, M, n) be a measure space. Let f, and f be complex-valued measurable functions.

(a) (3 points) Define what it means for f, to converge to f almost uniformly.

(b) (2 points) State Egoroft’s Theorem.

(c) (5 points) Egoroff’s Theorem fails when X = R, M = By is the Borel o-algebra, and
© = m is Lebesgue measure. Provide a counterexample to Egoroff’s Theorem in this
context. That is, give and justify an example of functions f, and f on R for which
Egoroff’s Theorem fails to hold.
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3. Let (X, M, u) and (Y, N,v) be measure spaces.
(a) (3 points) Define the product o-algebra M @ N on X x Y.

(b) (12 points) State the Fubini and Tonelli Theorems.
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4. Let (X, M) be a measurable space.
(a) (3 points) State the Hahn Decomposition Theorem

(b) (2 points) State the Jordan Decomposition Theorem
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5. Let (X, M) be a measurable space. Let p be a positive measure, and let v be a signed measure.

(a) (3 points) Define mutual singularity.

(b) (2 points) Define absolute continuity.

(c) (5 points) State the Lebesgue-Radon-Nikodym Theorem.
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6. Let (X, M) be a measurable space.

(a) (10 points) Let p be a positive measure, and let E; be a sequence of measurable sets.
Assume that Y22, pu(Ej;) < co. Show that p(limsup £;) = 0.
Recall that limsup E; = (2, U, Ej.

(b) (15 points) Let u and v be positive measures. Show that v L p if and only if there exists
a sequence Fj; of measurable sets such that p(E;) — 0 and v(Ef) — 0 as j — oo.

Hint: Construct a subsequence of the E; so that you can apply part (a).
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7. Let (X, M, u) be a finite measure space. Let N be a sub-c-algebra of M, and let v be the
restriction of u to N.

(a) (10 points) Given a M-measurable function f € L!(u), show that there exists an N-
measurable function g € L*(v) such that [, fdp = [, gdv for all E € N. This function
is called the conditional expectation of f on N.

Let X be the finite set {1,2,3,4,5,6}, let M = P(X) be the power set of X, and let u be
counting measure. Let f: X — R be defined by f(n) =n.

(b) (5 points) Explicitly write down the function g constructed above if N is the o-algebra
{0, X}. Make sure that g is N-measurable.

(¢) (5 points) Explicitly write down the function g constructed above if N is the o-algebra
{0,{1,3,5},{2,4,6}, X}. Make sure that g is N-measurable.
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Question | Points | Score

1 15
2 10
3 15
4 5
5 10
6 25
7 20

Total: 100
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