Recurrence, Transitivity, and Minimality

In the problems 1-4 and 6*, \(X \) is a non-empty compact set in \(\mathbb{R}^k \) (or a compact metric space). In problems 2 and 3, we do not assume that \(f \) is invertible.

1. Show that if \(f : X \to X \) is a contraction, then no point in \(X \), except for the fixed point, is positively recurrent.

2. Let \(f : X \to X \) be a continuous map. Prove that if a point \(x \in X \) is positively recurrent, then \(f(x) \) is also positively recurrent.

 Note: It follows that the set of recurrent points is invariant under \(f \), i.e.
 \[f(R_+(f)) \subseteq R_+(f). \]

3. Suppose that \(X \) does not contain isolated points and \(f : X \to X \) is a continuous map. Show that if the positive semi-orbit of \(x \in X \) is dense in \(X \), then \(x \) is positively recurrent.

4. Suppose that \(X \) contains infinitely many points, \(f : X \to X \) is a homeomorphism, and \(f : X \to X \) is minimal. What can you say about the periodic points of \(f \)?
 Justify your answer.

5. Let \(\mu \) be the \(k \)-dimensional Lebesgue measure, let \(X \subseteq \mathbb{R}^k \) be a set of finite measure, let \(f : X \to X \) be a measure-preserving map, and let \(A \subseteq X \) be a set of positive measure.
 Prove that there exists \(n \in \mathbb{N} \) such that \(\mu(f^{-n}(A) \cap A) > 0 \). Give two proofs:
 (a) Do not use the recurrence theorem proven in class in your arguments.
 (b) Deduce this result from the recurrence theorem proven in class.

Extra credit problem

6*. Suppose that \(X \) contains infinitely many points. Is it possible for a contraction \(f \) on \(X \) to be transitive? Is it possible for \(f \) to be minimal in the sense that:
 if \(A \) is a closed subset of \(X \) such that \(f(A) \subseteq A \), then \(A = X \) or \(A = \emptyset \)?
 Justify your answers.