Monotonic maps of an interval and differential equations

1. Let \(I = [a, b] \) and let \(f : I \to I \) be a non-decreasing continuous function. Suppose that for some \(x_0 \in (a, b) \), \(f(x_0) = x_0 \) and \(|f'(x_0)| > 1 \).

 Show that \(x_0 \) is a repelling fixed point for \(f \), i.e. that there is \(\delta > 0 \) such that for each \(x \neq x_0 \) in \(I \) with \(d(x, x_0) < \delta \) there exists \(N \) such that \(d(f^n(x), x_0) > \delta \) for all \(n \geq N \).

2. Let \(I = [a, b] \) and let \(f : I \to I \) be a continuous function.

 Prove that the set of fixed points of \(f \) is closed.

3. (a) Let \(a, b \in \mathbb{R} \), \(a < b \). Give a formula for an increasing continuous function \(f : [a, b] \to [a, b] \) such that \(f(a) = a \), \(f(b) = b \), and \(f(x) \neq x \) for \(x \in (a, b) \).

 (b) Let \(E \) be a closed non-empty set in \(\mathbb{R} \). Construct an increasing continuous function \(f : \mathbb{R} \to \mathbb{R} \) such that \(E \) is the set of fixed points of \(f \).

 *Hint: What can you say about the complement of \(E \)?

 Just describe the construction here. The proof of continuity is problem 6*.

4. Let \(I = [a, b] \) and let \(f : I \to I \) be a continuous non-increasing function.

 (a) Describe the set of fixed points of \(f \).

 (b) What are the possible prime periods for periodic points of \(f \)?

 *Hint: What can you say about \(f^2 \)?

 Justify your answers.

5. Give an example of a differential equation of the form \(\dot{x} = g(x) \) for which a solution diverges to infinity in finite time.

 Write down an equation and its solution. No explanations are required.

Extra credit problems:

6*. Prove that the function you constructed in Problem 3(b) is indeed continuous.

7*. Consider a function \(g : \mathbb{R} \to \mathbb{R} \) such that for some \(M > m > 0 \), \(-M \leq g'(x) \leq -m \) for all \(x \). Show that the differential equation \(dx/dt = g(x) \) has a unique constant solution \(x(t) = c \) and that all other solutions satisfy \(\lim_{t \to \infty} x(t) = c \).