Each ticket will contain a theoretical question from the list below and a problem. Questions on these topics may also be asked after you answer the questions on the ticket.

- **Circle rotations**
 - Rational rotations: periods of points
 - Irrational rotations:
 - Minimality: statement and proof
 - Equidistribution: statement
 - Distribution of first digits of powers: statement and connection to circle rotations

- **Contractions**
 - Definition
 - Contractions of an interval: statements and proofs
 - Contraction Principle: statement and proof
 - Contractions in \mathbb{R}^k: statement

- **Periodic and fixed points**
 - Definitions;
 - Attracting fixed points: definition,
 - a sufficient condition for a fixed point of an interval map: statement and proof

- **Non-decreasing continuous interval maps:**
 - Fixed points: statement and proof
 - Orbits of points: statement and proof

- **Autonomous differential equations, $\dot{x} = g(x)$**
 - Lipschitz functions: definition and examples
 - Behavior of the solutions: statement and proof
 - Existence and uniqueness of solutions: statement and proof,
 - an example of non-uniqueness

- **Linear maps of the plane**
 - “Models”
 - Invariant curves and orbits of points for each “model”
 - Conjugacy of real 2×2 matrices to the models
 - Topological conjugacy of dynamical systems
 - Linear differential equations in the plane and matrix exponential
• Homeomorphisms
 – Definition
 – Continuity of the inverse for a continuous bijection: two proofs

• Recurrence
 – Measurable sets and Lebesgue measure – an overview
 – Measure-preserving map: definition
 – Poincare Recurrence Theorem: statement and proof
 – Poincare Recurrence – a topological version: statement and proof

• Topological transitivity, minimality, and topological mixing
 – Definitions and examples
 – Minimality and closed invariant sets: statement and proof
 – Criteria for topological transitivity: four equivalent statements and proof of their equivalence
 – Meaning of topological mixing

• Times-\(m\) map of the circle
 – Fixed and periodic points
 – Writing numbers in base \(m\)
 – Constructing a point with dense orbit
 – Topological mixing

• Sequence spaces \(\Omega_m\) and \(\Omega_{m+}\), and the shift map
 – Definitions
 – Metrics on \(\Omega_m\) and \(\Omega_{m+}\), and open balls in these metrics
 – The spaces are compact and do not have isolated points, the shift is continuous
 – Fixed points and periodic points
 – Topological mixing with proof
 – Symbolic dynamical system: definition and examples

• Expanding maps of the circle
 – Definition of an expanding map
 – Definitions of lift and degree for a circle map
 – For expanding circle maps of degree 2:
 – Fixed points
 – Coding and semiconjugacy with the shift
 – Definition of semiconjugacy for two dynamical systems
 – Topological conjugacy for expanding circle maps of degree 2 (or \(m\)) and implications for periodic points, transitivity, etc.
• **Linear maps of the torus** \mathbb{T}^2

 - The torus
 - Invertible linear maps (automorphisms) of the torus
 - Hyperbolic toral automorphisms
 - An example, and the action on the fundamental domain (unit square)
 - The eigenvalues are irrational and eigendirections have irrational slopes
 - A point is periodic if and only if its coordinates are rational, with *proof*
 - The number of periodic points of period n: statement and an outline of a proof; a formula for the case if eigenvalues $\lambda > 1$ and $1/\lambda$
 - Topological mixing, with *proof*

• **Topological entropy**

 - Definition and three quantities that can be used in the definition (N, S, D)
 - Topological entropy of isometries and contractions is zero, with *proof*
 - Entropy of E_m is $\log m$, with *proof*
 - If two metrics generate the same topology, the entropy is the same, with *proof*
 - Topological entropy is an invariant of topological conjugacy, with *proof*
 - Properties of topological entropy
 - Topological entropy of a hyperbolic toral automorphism

• **Chaos and Sensitive dependence on the initial conditions**

 - Definitions
 - Examples
 - Chaotic maps exhibit sensitive dependence
 - Topological mixing implies sensitive dependence, with *proof*