The circle.

let $m \in \mathbb{N}, m \geq 3$. For $x \in S^1$, $E_m(x) = mx \mod 1$

Consider $m = 3$

Recall: $S^1 = \mathbb{R}/\mathbb{Z}$. The map $E_3 : S^1 \to S^1$ is well-defined since $x \sim y \in \mathbb{Z}$ implies $3x \sim 3y \in \mathbb{Z}$

Each $x \in S^1$ has a unique representative $3x$ (fractional part) in $[0, 1)$

so we can view E_3 as a map on $[0, 1)$ given by $x \mapsto 3x$

To visualize, stretch the circle by a factor of 3 and wrap it around itself 3 times.

OR sketch the graph of the map.

$\left(x \mapsto \frac{3x}{3} \right)$ on $[0, 1)$

Keep in mind that 0 and 1 are identified.

- The map E_3 is not one-to-one for example $0, \frac{1}{3}, \frac{2}{3}$ are mapped to 0

In fact, every y has exactly 3 pre-images: $\frac{y}{3}, \frac{y+1}{3}, \frac{y+2}{3}$. So the map is 3-to-1.

Since E_3 is not one-to-one, it is not invertible.

Clearly, the map is onto.

- If $d(x, y)$ on the circle is small, then $d(E_3(x), E_3(y)) = 3d(x, y)$.

This holds as long as $f(x), f(y)$ remain $\leq \frac{1}{2}$ apart, i.e., whenever $d(x, y) \leq \frac{1}{6}$.

Thus E_3 is an expanding map.

1. Does E_3 preserve length, that is, is it true that for any interval I on the circle, the length of I equals the total length of its pre-image, $(E_3)^{-1}(I)$? Yes! $(E_3)^{-1}$ consists of 3 intervals of length $\frac{1}{3}|I|$.

2. What are the fixed points of E_3?

$E_3(x) = x \quad x = 3x \mod 1, \quad 2x = 0 \mod 1 \quad x = 0$ or $\frac{1}{2} \mod 1$.

Check: $E_3(0) = 0, \quad E_3\left(\frac{1}{2} \right) = 3 \cdot \frac{1}{2} = \frac{3}{2}$ mod 1.

Let us find all periodic points of period $n \in \mathbb{N}$.

x is n-periodic $\iff E^n_3(x) = x \mod 1 \iff$

$\iff 3^n x = x + k$ for some $k \in \mathbb{Z} \iff x = \frac{k}{3^n - 1}$

Such x is in $[0, 1)$ if and only if $0 \leq k < 3^n - 1$.

10
Thus, E_3 has exactly $3^n - 1$ periodic pts. of period n.

For example, for $n = 2$ we get $\frac{K}{3^2 - 1} = \frac{K}{8}$, where $K = 0, 1, \ldots, 7$.

Check for $\frac{5}{8}$: $E_3^2(\frac{5}{8}) = 3 \cdot \frac{5}{8} = 4 \frac{5}{8} = \frac{5}{8}$ mod 1.

The numbers of the form $\frac{K}{3^2 - 1}$, where $0 \leq K < 3^n - 1$ are dense in $[0, 1)$.

So the set of periodic pts of E_3 is dense in S^1 — arbitrarily close to any given point there is a periodic point.

But of course not all points are periodic under E_3.

Is there a point with dense orbit?

To study E_3 further, we will write numbers in $[0, 1]$ in base 3.

Let us review base 10 first.

$x = 0.123\ldots$ in base 10

means that x is in interval 2,

more specifically, in interval $[1/3, 1/10]$.

$x = 0.\alpha_1 \alpha_2 \alpha_3 \ldots$ means that $x = \sum_{n=1}^{\infty} \alpha_n / 10^n$.

Multiplication by 10 and taking the remainder shifts the sequence to the left: $10x = 2\alpha_1 \alpha_2 \alpha_3 \ldots$.

Does every number in $[0, 1)$ have a unique expansion in base 10?

No! $0.999\ldots = 1.000\ldots$.

In general, $0.d_1 d_2 \ldots d_k 999\ldots = 0.d_1 d_2 \ldots (d_k+1) 00\ldots$.

For numbers not of this form the expansion is unique.

Note: The numbers with non-unique expansion correspond to endpoints of the decimal intervals.