Recurrence theorems

Let $X \subseteq \mathbb{R}^k$ be measurable, for example, an open set or a closed set.

A map $f: X \to X$ is measure-preserving if for any measurable set $A \subseteq X$, $\mu(f^{-1}(A)) = A$.

Examples:
- $f: S^1 \to S^1$,
- $g: S^1 \to S^1$.

Let $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x + b$ is measure-preserving, but there is no recurrent points, so to obtain recurrence we also require that X has finite measure.

The latter holds for bounded sets in \mathbb{R}^k.

Pointwise Recurrence Thm

Let $X \subseteq \mathbb{R}^k$ be a set of finite measure (for example, a open or closed bounded set),

let $f: X \to X$ be a measure-preserving map, and let $A \subseteq X$ be a measurable set (for example, a ball or a box).

Then almost every point of A returns to A, i.e.

for almost every $a \in A$, there is $n_0 \in \mathbb{N}$ s.t. $f^n(a) \in A$.

Almost every means every except for a set of points of measure 0.

Proof:

Let Y be the set of points of A that never return to A, i.e.

$Y = \{ a \in A : f^n(a) \notin A \text{ for all } n \in \mathbb{N} \}$

$= \{ a \in A : a \notin f^{-n}(A) \text{ for all } n \in \mathbb{N} \} = A \setminus \bigcap_{n=1}^{\infty} f^{-n}(A)$

So Y is measurable.

We observe that for any $k \in \mathbb{N}$, $f^{-k}(Y) \cap Y = \emptyset$.

Indeed, if $x \in f^{-k}(Y) \cap Y$, then $x \in A$ and $f^k(x) \in A$,

which is impossible by def. of Y.

It follows that for any $m \neq n$ in \mathbb{N}, $f^{-n}(Y) \cap f^{-m}(Y) = \emptyset$.

Thus $f^{-n}(Y)$, $n \in \mathbb{N}$ are disjoint measurable sets and

$\mu(f^{-n}(Y)) = \mu(Y)$ for each n.

The sum of their measures = measure of their union is $\mu(Y) < \infty$.

It follows that $\mu(Y) = 0$. (Otherwise the sum is infinite) \square

Corollary: Under the assumptions of the Thm,

almost every $a \in A$ returns to A infinitely many times, i.e.

there is a subsequence (n_k) s.t. $f^{n_k}(a) \in A$ for all $k \in \mathbb{N}$.

Proof: A point $a \in A$ returns to A only finitely many times or never

$\iff f^n(a) \in Y$ for some $n \in \mathbb{N} \cup \{0\} \iff a \in f^{-n}(Y)$ for some $n \in \mathbb{N} \cup \{0\}$.

Thus $a \notin \bigcap_{n=0}^{\infty} f^{-n}(Y)$. Since for each n, $\mu(f^{-n}(Y)) = \mu(Y) = 0$,

$\mu\left(\bigcup_{n=0}^{\infty} f^{-n}(Y) \right) \leq \sum_{n=0}^{\infty} \mu(f^{-n}(Y)) = 0.$ \square
Recall: \(x \in X \) is recurrent if for any \(\varepsilon > 0 \) there is \(n \in \mathbb{N} \) s.t.
\[
d(f^n(x), x) < \varepsilon.
\]

Theorem

Let \(X \subseteq \mathbb{R}^d \) be either a bounded open set or the closure of a bounded open set (bounded \(\implies \mu(X) < \infty \)), and let \(f : X \to X \) be a measure-preserving map.

Then almost every point in \(X \) is recurrent.

Proof

Let \(Q \) be the set of all points in \(X \) with rational coordinates. Then \(Q \) is countable and dense in \(X \).

Consider the collection of open balls \(B(q, \frac{1}{n}) \), where \(q \in Q \) and \(n \in \mathbb{N} \). This collection is countable: we can list them as \(B_1, B_2, \ldots \).

For each \(k \), let \(\bar{B}_k = B_k \cap X \).

We observe that \(x \) is recurrent \(\iff \) \(x \) returns to each \(\bar{B}_k \) that contains it.

So it suffices to show that the set of points that do not have this property has measure 0.

For each \(k \), let \(Y_k = \{ x \in \bar{B}_k : x \text{ does not return to } \bar{B}_k \} \).

Then by the previous theorem \(\mu(Y_k) = 0 \).

Hence \(\mu(\bigcup_{k=1}^{\infty} Y_k) = 0 \).

It follows that almost every \(x \in X \) is recurrent. \(\Box \).

Corollary

Under the assumptions of the Thm, the set of recurrent points is dense in \(X \).

Otherwise, the set of non-recurrent pt. contains an open ball in \(X \) and hence has positive measure.

Note: The theorem applies to \(E_3 : S^1 \to S^1 \). Indeed, \(S^1 \) is \([0,1] \) with endpoints identified and \(E_3 \) is measure-preserving, so almost every \(x \in S^1 \) is recurrent.

Observe that every \(x = \frac{k}{3^n} \), \(1 \leq k \leq 3^n - 1 \) is non-recurrent.