Recurrence

- A metric space, \(f: X \to X \) - a continuous map.

Def. A point \(x \in X \) is called **recurrent** if for any \(\epsilon > 0 \) there is \(n \in \mathbb{N} \) s.t. \(d(f^n(x), x) < \epsilon \).

Equivalently, if \(x = \lim f^n(x) \) for some subsequence \((n_k) \).

(If \(f \) is invertible, such a point is called **positively recurrent**.)

Ex.
- A fixed point is recurrent.
- A periodic point is recurrent.
- \(R^1: S^1 \to S^1 \). Every point is recurrent.
- \(f: [a, b] \to [a, b] \) cont. increasing. Only fixed points are recurrent.
- For any other point \(x \), \(f^n(x) \) converges to a fixed point, and hence there is no subsequence converging to \(x \).
- \(f: [0, \infty) \to [0, \infty) \), \(a > 0 \), \(f(x) = x + a \).
 - There are no recurrent points.
- \(f: (0, 1] \to (0, 1] \), \(f(x) = \frac{x}{2} \). No recurrent points.

Note: \(S^1 \) and \([a, b] \) are compact, \([0, \infty) \) and \((0, 1] \) are not.

If \(X \) is not compact, there may be no recurrent points.

Fact. Let \(X \) be a closed bounded set in \(\mathbb{R}^k \) or, more generally, let \(X \) be a compact metric space, and let \(f: X \to X \) be continuous.

Then \(X \) contains a minimal closed set for \(f \) (not necessarily unique).

That is, there is a non-empty closed set \(Y \subseteq X \) s.t.

- \(Y \) has no closed \(f \)-invariant subsets except for \(Y \) and \(\emptyset \).

Corollary. If \(X \) is compact and \(f: X \to X \) is continuous,

then there is a recurrent point.

Proof. Let \(Y \subseteq X \) be a minimal set. Then for every \(y \in Y \),

the orbit of \(y \) is dense in \(Y \) and so \(y \) is recurrent. \(\square \)

- Let \(X \) be compact and \(f: X \to X \) continuous. Then there is a recurrent point. Are there just a few of them?
- Is "almost every" \(x \in X \) recurrent?

Note: \(R^1: S^1 \to S^1 \) preserves length contractions and continuous maps of \([a, b] \) do not.
Consider \(\mathbb{R}^k \). We can define the usual \(k \)-dimensional volume for "boxes" in \(\mathbb{R}^k \):

\[
\mu([a_1, b_1] \times \ldots \times [a_k, b_k]) = (b_1 - a_1) \ldots (b_k - a_k)
\]

It can be extended to a large class of sets, called measurable sets:

- All open sets and all closed sets are measurable.
- If \(A \) and \(B \) are measurable, then so are \(A \setminus B, A \cup B, \text{ and } A \cap B \).
- If \(A_1, A_2, \ldots \) are measurable, then so are \(\bigcap_{n=1}^{\infty} A_n \) and \(\bigcup_{n=1}^{\infty} A_n \).

Def. A set \(A \subseteq \mathbb{R}^k \) is open if for every \(a \in A \) there exist \(r > 0 \) s.t. \(B(a, r) \subseteq A \).

\[
B(a, r) = \{ x \in \mathbb{R}^k : d(a, x) < r \}
\]

Note: All sets we can think of are measurable.

The \(k \)-dimensional Lebesgue measure \(\mu = \mu_k \) is the extension of the \(k \)-dimensional volume to measurable sets. For each measurable set \(A \), \(\mu(A) \in [0, \infty] \), and if \(A_1, A_2, A_3, \ldots \) are pairwise disjoint, then

\[
\mu \left(\bigcup_{n=1}^{\infty} A_n \right) = \sum_{n=1}^{\infty} \mu(A_n) \quad (**)
\]

Ex. For any point \(x \), \(\mu(\{x\}) = 0 \). Hence for any countable set

\[
Y = \{ y_1, y_2, y_3, \ldots \} \quad \mu(Y) = \sum_{n=1}^{\infty} \mu(\{y_n\}) = 0.
\]

Note. For any measurable \(A, B \),

- if \(A \cap B = \emptyset \), then \(\mu(A \cup B) = \mu(A) + \mu(B) \). (Take \(A_1 = A, A_2 = B, A_3 = \emptyset, \ldots \))
- if \(A \subseteq B \), then \(\mu(A) \leq \mu(B) \) since \(B = A \cup (B \setminus A) \)

Hence if \(A \) is open, then \(A \) contains an open ball, which has positive measure, and hence \(\mu(A) > 0 \).

Ex. The Cantor set \(C \) has Lebesgue measure \(0 \). (HW).