Periodic points

Let \(X \) be a set and let \(f \) be a map from \(X \) to \(X \).

Def: A point \(p \in X \) is called periodic if \(f^n(p) = p \) for some \(n \in \mathbb{N} \).

A number \(n \in \mathbb{N} \) s.t. \(f^n(p) = p \) is called a period of \(p \).

The smallest such \(n \) is called the prime period of \(p \).

Note: If \(n \) is a period, then \(kn \) is also a period for any \(k \in \mathbb{N} \).

Note: Any fixed pt is a periodic pt with prime period 1.

Ex: Let \(f : X \to X \) be a contraction with a fixed pt \(x^* \).

Then \(f \) has no periodic pts except for \(x^* \) since for each \(x \in X \) and \(n \in \mathbb{N} \), \(d(f^n(x), x^*) < d(x, x^*) \) and so \(f^n(x) \neq x \).

Ex: \(f : \mathbb{R} \to \mathbb{R}, \ f(x) = -x \).

Fixed pt: 0, every other pt. is periodic with prime period 2.

Ex: \(f : \mathbb{R} \to \mathbb{R}, \ f(x) = -x^3 \).

Fixed pt: 0, \(1, -1 \) - periodic w. prime period 2, no other.

The circle \(S^1 \)

\(S^1 = \mathbb{R}/\mathbb{Z} = \) the set of real numbers with \(x \) and \(y \) identified if they differ by an integer, i.e., have the same fractional part. We write \(x \equiv y \mod 1 \).

More formally, define an equivalence relation on \(\mathbb{R} \):

\(x \sim y \Leftrightarrow x - y \in \mathbb{Z} \). \(\mathbb{R}/\mathbb{Z} \) is the set of equivalence classes.

\(\mathbb{Z} = \{ \mathbb{Z} \} \subset \mathbb{R}/\mathbb{Z} \). Ex. \([0, 1] = \mathbb{Z} \).

Each class has a unique representative in \([0, 1)\).

Adding equiv. classes corresponds to adding their representatives \mod 1.

Ex: \([\frac{2}{3}] + [\frac{1}{4}] = [\frac{2}{3} + \frac{1}{4}] = [\frac{7}{12}] = [\frac{7}{12} - \frac{6}{12}] = \frac{1}{12} \mod 1 \).

We will consider numbers in \([0, 1)\) with addition \mod 1.

To visualize: Wrap the real line around a circle of circumference 1, which we can think of as \([0, 1)\) with 0 and 1 identified.

Then adding 2 corresponds to the counterclockwise rotation by 2\(\pi\).

Note that angles 2\(\pi\) and \(\beta\) with \(\beta \in \mathbb{Z}\) with \(\beta, \beta \in \mathbb{Z}\) correspond to the same point on the circle.
Circle rotations

Let \(a \in \mathbb{R} \). Denote by \(R_{a} \) the rotation by \(a \), i.e. \(R_{a}(x) = x + a \mod 1 \). Then \(R_{a} \) is invertible with \((R_{a})^{-1} = R_{-a} \) and \((R_{a})^{n}(x) = x + na \mod 1 \).

EXAMPLE: Let \(a = \frac{1}{3} \) and \(x = \frac{2}{3} \).

\[
R_{a}(\frac{2}{3}) = \frac{2}{3} + \frac{1}{3} = \frac{3}{3} = 1 \mod 1
\]
\[
(R_{a})^{2}(\frac{2}{3}) = \frac{3}{3} + \frac{1}{3} = \frac{4}{3} = \frac{1}{3} \mod 1
\]
\[
(R_{a})^{3}(\frac{2}{3}) = \frac{3}{3} + 3 \cdot \frac{1}{3} = \frac{3}{3} + 1 = 2 \mod 1
\]

So \(\frac{2}{3} \) is periodic with prime period 3. Same for any \(x \).

Rational \(a \)

Proposition: Let \(a = \frac{p}{q} \), where \(p \) and \(q \) are relatively prime integers. Then for the map \(R_{a} \) on \(S^{1} \), every \(x \) is periodic with prime period \(q \).

Proof: We need to show that for each \(x \in S^{1} \), \((R_{a})^{k}(x) = x \) and \((R_{a})^{k}(x) \neq x \) for \(k = 1, 2, \ldots, q - 1 \).

Let \(x \in S^{1} \). \((R_{a})^{k}(x) = (x + q \cdot \frac{p}{q}) = x + p = x \mod 1 \).

Suppose that \((R_{a})^{k}(x) = x \) for some \(k \), \(1 \leq k \leq q - 1 \).

Then \(x + k \cdot \frac{p}{q} = x \mod 1 \). Hence \(x + k \cdot \frac{p}{q} = x + m \cdot \frac{p}{q} \) for some \(m \in \mathbb{Z} \), and so \(pk = qm \). Since \(p \) and \(q \) are relatively prime, it follows that \(q \) divides \(k \), which is impossible as \(1 \leq k \leq q - 1 \). \(\square \)

Irrational \(a \)

Prop: If \(a \) is irrational, then \(R_{a} \) has no periodic points. (HW)