j-multiplicity and depth of associated graded rings

Yu Xie
University of Notre Dame

(Joint work with Claudia Polini)

2010 Fall Central Section Meeting
University of Notre Dame

November 7, 2010
Outline

- Introduction
- Main results
- An example
In this talk, we will fix the following setting:

- (R, \mathfrak{m}, k) is a Cohen-Macaulay local ring with maximal ideal \mathfrak{m} and residue field k.
- $d = \dim R$.
- I is an R-ideal.
- $G = \text{gr}_I(R) = \bigoplus_{j=0}^{\infty} I^j / I^{j+1}$ is the associated graded ring of R with respect to I.

It is well known that G reflects various algebraic and geometric properties of the ideal I. For instance, $\text{proj}(G)$ is the exceptional fibre of the blow-up of $\text{spec}(R)$ along the subvariety $V(I)$.

One is particularly interested in $\text{depth}(G)$.

- $\text{depth}(G)$ gives information on the vanishing of cohomology groups of the exceptional fiber of the blow-up and of the blow-up itself.

- The Cohen-Macaulayness or Gorensteinness of G provide a wealth information about how I sits in R and one could compute various numerical invariants of the exceptional fiber and of the blow-up (Castelnuovo-Mumford regularity, number of defining equations, ...).
Method 1. \(\sqrt{I} = \mathfrak{m} \).

Use assumptions on the Hilbert-Samuel multiplicity.

(Corso, Elias, Vaz Pinto, Polini, Rossi, Valla, Sally, Wang, Puthenpurakal, ...)

Remark: In the first method, the Hilbert function is also completely determined.

Method 2: \(I \) is any ideal.

Use (i) assumptions on residual intersections and depth of the powers of \(I \) (this is automatic if \(\sqrt{I} = \mathfrak{m} \)) and (ii) conditions on reduction number of \(I \) (replace the assumptions on the multiplicity).

(Aberbach, Goto, Herzog, Huneke, Huckaba, Johnson, Nakamura, Nishida, Simis, Trung, Ulrich, Vasconcelos, ...)
Introduction

In our approach: I is any ideal.

Use assumptions on j-multiplicity of I and residual intersections.

Remark: In our approach, we also defined the generalized Hilbert function and determine its shape (in progress).
Case 1. \(l = m \).

(Abhyankar, 1967)

\[
e(R) = e(m) \geq (\mu(m) - d) + 1 = \text{ecodim}(R) + 1,
\]

where \(e(m) \) is the Hilbert-Samuel multiplicity of the maximal ideal \(m \), \(\mu(m) \) is the number of a minimal generating set of \(m \) and \(\text{ecodim}(R) \) is the embedding codimension of \(R \).

\(R \) has **minimal multiplicity** if \(e(R) = \text{ecodim}(R) + 1 \).
Theorem

1. (Sally, 1980’s) If $e(R) = \text{ecodim}(R) + 1$,
or $e(R) = \text{ecodim}(R) + 2$ and $\text{type}(R) < \text{ecodim}(R)$,
or $e(R) = \text{ecodim}(R) + 3$ and R is Gorenstein,
then G is Cohen-Macaulay.

2. (Rossi-Valla, 1996, Wang, 1997) If $e(R) = \text{ecodim}(R) + 2$,
then G is almost Cohen-Macaulay, i.e., $\text{depth } G \geq d - 1$.

3. (Rossi-Valla, 2000) If $e(R) = \text{ecodim}(R) + 3$ and $\text{type}(R) < \text{ecodim}(R)$,
then G is almost Cohen-Macaulay.
Case 2. I is m-primary.

The generalized Abhyankar’s inequality:

$$e(I) \geq \left[\lambda(I/I^2) - (d - 1)\lambda(R/I) \right] + \lambda(I^2/JI)$$

$$\geq \lambda(I/I^2) - (d - 1)\lambda(R/I)$$

where $e(I)$ is the Hilbert-Samuel multiplicity of the ideal I, $\lambda(I/I^2)$ is the length of I/I^2.

I has **minimal multiplicity** if

$$e(I) = \lambda(I/I^2) - (d - 1)\lambda(R/I).$$
The case of m-primary ideals was done by Corso-Polini-Vaz Pointo, Rossi, Elias.

Rossi and Valla generalized the result to $R = M$ with $\lambda(M/IM) < \infty$.

The tools used are superficial sequences, Sally machine, Valabrega-Valla Criterion and Ratliff-Rush filtrations.
Main results

Case 3. \(I \) is any ideal.

j-multiplicity (Achilles-Manaresi, 1993)

Consider \(H^0_m(G) = 0 :_G m^\infty \).

Observe \(H^0_m(G) \) is a finite graded module over \(G/m^sG \) for some \(s > 0 \) of dimension \(\leq d \). Thus for \(t >> 0 \),

\[
\lambda([H^0_m(G)]_t) = \frac{j(I)t^{d-1}}{(d-1)!} + \text{lower terms}.
\]

The normalized leading coefficient \(j(I) \) is called the **j-multiplicity** of \(I \).

Observe

- \(j(I) \neq 0 \iff \dim H^0_m(G) = d \iff \ell(I) := \dim G/mG = d. \)
- If \(I \) is \(m \)-primary then \(j(I) = e(I) \).
Main results, Continued

From now on, we assume $\ell(I) = d = \text{dim } R$.
Theorem (Achilles-Manaresi, Nishida-Ulrich, Xie)

Assume R has infinite residue field. For general elements x_1, \ldots, x_d in I, set $a = (x_1, \ldots, x_{d-1})R$, then

$$j(I) = e(I, R/a : I^\infty) = \lambda(R/(a : I^\infty + x_d R)).$$

It follows from the following facts:

1. Achilles-Manaresi (1993): The formula holds for any super-reduction sequence x_1, \ldots, x_d in I.
3. Xie (2009): General elements x_1, \ldots, x_d in I form super-reduction sequences.
Let $\overline{R} = R/\alpha : I^\infty$ and $\overline{I} = I \overline{R}$, then \overline{R} is a 1-dimensional Cohen-Macaulay local ring and \overline{I} is \overline{m}-primary. Furthermore,

$$j(I) = e(I) \geq \lambda(I/I^2) + \lambda(I^2/x_d I) \geq \lambda(I/I^2).$$

Lemma (Polini-Xie)

$\lambda(I/I^2)$ and $\lambda(I^2/x_d I)$ are independent of x_1, \ldots, x_d.
Definition (Polini-Xie)

I has **minimal** j-multiplicity if for general elements x_1, \ldots, x_d in I,

$$j(I) = \lambda(\bar{I}/\bar{I}^2).$$

I has **almost minimal** j-multiplicity if for general elements x_1, \ldots, x_d in I,

$$j(I) = \lambda(\bar{I}/\bar{I}^2) + 1.$$

Observe

$$j(I) = \lambda(\bar{I}/\bar{I}^2) \iff \bar{I}^2 = x_d \bar{I} \iff I^2 = x_d I + (x_1, \ldots, x_{d-1} : I^\infty) \cap I^2.$$
Main results, Continued

The ideal I has the **condition G_d**, if for every $p \in V(I) \setminus \{m\}$, $\mu(I_p) \leq \text{ht } p$, where $\mu(I_p)$ is the number of a minimal generating set of I_p and $\text{ht } p$ is the height of p.

Let $H = (x_1, \ldots, x_t) : I$, where $(x_1, \ldots, x_t) \subsetneq I$. H is said to be a **geometric t-residual intersection of I**, if

- $\text{ht } H \geq t \geq \text{ht } I$.
- $\text{ht } (H + I) \geq t + 1$.

The ideal I has the **Artin-Nagata property AN_{d-2}** if for every $i \leq d - 2$ and every geometric i-residual intersection H of I, R/H is Cohen-Macaulay.
I has G_d and AN_{d-2} if

(1) I is m-primary;

(2) I is generically a complete intersection with $\dim R/I = 1$;

(3) I has G_d and sliding depth or strongly Cohen-Macaulay;

(4) I has G_d and $\text{depth } R/I^j \geq \dim R/I - j + 1$ for $1 \leq j \leq \dim R/I - 1$.

Theorem (Goto-Nakamura-Nishida, Johnson-Ulrich)

Assume I has G_d and condition (4). If the reduction number $r(I) \leq \dim R/I + 1$, then G is Cohen-Macaulay.
Main results, Continued

Theorem (Polini-Xie)

Assume \(\text{depth} \left(\frac{R}{I} \right) \geq \min \{ \dim \frac{R}{I}, 1 \} \) and \(I \) has \(G_d \) and \(AN_{d-2}^- \). One has the following statements:

1. If \(I \) has minimal \(j \)-multiplicity then \(G \) is Cohen-Macaulay.

 If in addition, \(R \) is Gorenstein and

 \[
 \text{depth} \left(\frac{R}{I^j} \right) \geq \dim \frac{R}{I} - j + 1 \text{ for } 1 \leq j \leq \dim \frac{R}{I} - 1,
 \]

 then \(G \) is Gorenstein.

2. If \(I \) has almost minimal \(j \)-multiplicity then \(G \) is almost Cohen-Macaulay.
Proof: 1. May assume that I is not m-primary. Observe

$$j(I) = \lambda(\bar{I}/\bar{I}^2) \iff \bar{I}^2 = x_d \bar{I}.$$ Therefore

$$I^2 = x_d I + (x_1, \ldots, x_{d-1} : I^\infty) \cap I^2 = (x_1, \ldots, x_d)I$$

where the second equality follows from residual assumptions. This shows $r(I) = 1$. By Goto-Nakamura-Nishida, Johnson-Ulrich, G is Cohen-Macaulay or Gorenstein.

2. Use a very deep combination of the methods used for m-primary ideals with tools in residual intersection theory.
Example (Nishida-Ulrich)
Let S be a 3-dimensional Cohen-Macaulay local ring and x, y, z are system of parameters for S. Set

$$R = S/(x^2 - yz)S, \quad I = (x, y)R.$$

Then I has minimal j-multiplicity. Indeed, let ξ be a general element in I, $\overline{R} = R/\xi R : I^\infty$ and $\overline{I} = I\overline{R}$, then

$$j(I) = \lambda(\overline{I}/\overline{I}^2) = \lambda_S(S/(x, y, z)S) \neq 0.$$

Observe R is a Cohen-Macaulay local ring of dimension 2, I is a Cohen-Macaulay ideal of $\dim R/I = 1$ which is generically a complete intersection. By our theorem, G is Cohen-Macaulay and if in addition S is Gorenstein, then G is also Gorenstein.