Cohen-Macaulayness of conormal modules

Yu Xie
University of Notre Dame

(Joint work with Paolo Mantero)

2011 Joint Mathematics Meetings
New Orleans

January 7, 2011
Outline

- Introduction
- Main results
- Negative examples
Recall: For a Noetherian local ring R and an R-ideal I, I/I^2 is called the first conormal module of I.

Goal: We study the Cohen-Macaulayness of I/I^2 for some classes of ideals, namely ideals defining stretched algebras, short algebras and algebras with low multiplicity.
Motivation: I/I^2 plays an important role in the process of understanding the structure of I.

For example,

- Theorem (Vasconcelos, 1967): Assume $\text{Proj}_R I < \infty$. Then the freeness of I/I^2 (as R/I module) is equivalent to I being a complete intersection.

- Conjecture 1 (Vasconcelos, 1978): Assume $\text{Proj}_R I < \infty$. Then $\text{Proj}_{R/I} I/I^2 < \infty$ is equivalent to I being a complete intersection.

(Conjecture 1 has been proved for some classes of ideals (0-dimensional ideals, almost complete intersection ideals, perfect ideals of height two or Gorenstein of height three, ideals of low projective dimension) in a Noetherian local ring (Vasconcelos, 1978) and for ideals defining finitely generated graded k-algebras. (Avramov-Herzog, 1994))
Conjecture 2 (Vasconcelos, 1987): Assume R is a Gorenstein local ring and I is a height 3 syzygetic perfect ideal. If I/I^2 is Cohen-Macaulay then R/I is Gorenstein.

(Conjecture 2 is still wide-open. It was done for almost complete intersection ideals and homogeneous ideals of type 2 having a pure resolution (Vasconcelos, 1987))
Conjecture 2 was extended later to the following question:

Question A

Let R be a regular local ring and I a perfect ideal that is generically a complete intersection (i.e., I_p is a complete intersection R_p-ideal for every $p \in \text{ass}_R(R/I)$). If I/I^2 is Cohen-Macaulay, then does R/I have to be Gorenstein?

Question A has been proved to be true for licci ideals (Huneke-Ulrich, 1989). In particular, it is true for all perfect ideals of height 2. Recently it has been shown to be true for all squarefree-monomial ideals (Terai-Yoshida).
In our work, by studying the Cohen-Macaulayness of I/I^2, we give positive answer to Question A for some classes of ideals. More precisely, we prove Question A is true for the following classes of ideals:

- I defines a stretched algebra and the residue field of R has characteristic zero.
- I defines a short algebra with socle degree at least 3.
- I defines a short algebra with socle degree 2 and its multiplicity satisfies some numerical conditions.
- I defines an algebra with multiplicity less than or equal to height $I + 4$ and the residue field of R has characteristic zero.
Furthermore, using CoCoa, J. C. Migliore found that the ideal I defining a set of 10 (general) points in \mathbb{P}^5 gives a negative answer to Question A. Since this example has multiplicity $10 = \text{height } I + 5$, this shows the sharpness of our results.

Using tools from linkage theory, we deform this homogeneous level ideal I to a perfect prime ideal p in a regular local ring with p/p^2 Cohen-Macaulay but p is not Gorenstein, proving that the general answer to Question A is negative even for prime ideals. This method shows in particular that Question A can be reduced to the case of prime ideals.
Main results

From now on, for simplicity, we will always assume

- (R, m) is a regular local ring with maximal ideal m and $\text{char } R/m = 0$.
- $I \subseteq m^2$ is an R-ideal of height c.

Remark:
1. The condition $\text{char } R/m = 0$ is not need for the case of short algebras.
2. We can always reduce to the case that $I \subseteq m^2$.
3. Our method also works in the homogeneous settings.
Notation: Let \((A, \mathfrak{n})\) be an Artinian local ring.

The *socle degree* \(\text{socdeg}(A)\) is the positive integer \(s\) with \(\mathfrak{n}^{s+1} = 0\) and \(\mathfrak{n}^s \neq 0\). The *socle* \(\text{soc}(A) = 0 :_A \mathfrak{n}\).

The *type* \(\tau(A) = \dim_{A/\mathfrak{n}} \text{soc}(A)\).

The *socle degree* \(\text{socdeg}(R)\), the *socle* \(\text{soc}(R)\) and the *type* \(\tau(R)\) are then defined respectively to be \(\text{socdeg}(R/J)\), \(\text{soc}(R/J)\) and \(\tau(R/J)\), where \(J\) is any minimal reduction of \(m\).

The ring \(R\) is *Gorenstein* if in addition \(\tau(R) = 1\).

We use \(e(R)\) to denote the Hilbert-Samuel multiplicity of \(R\) with respect to its maximal ideal \(m\).
Case 1. Stretched algebras.

Definition

An Artinian local ring \((A, \mathfrak{n})\) is said to be stretched if \(\mathfrak{n}^2\) is a principal ideal. Let \(I\) be a perfect ideal in \(R\), \(I\) is stretched (or \(R/I\) is stretched) if \(R/(I + (\underline{y}))\) is a stretched Artinian local ring for any \(\underline{y} = y_1, \ldots, y_t\) a minimal reduction of \(m_{R/I}\).

As a consequence, the Hilbert Function of a stretched Artinian local ring \((A, \mathfrak{n})\) is:

\[
\begin{array}{ccccccccc}
1 & c & 1 & 1 & \ldots & 1 & 0 \\
\end{array}
\]

Thus if \(I\) is stretched of \(\text{socdeg}(R/I) = s\), then \(e(R/I) = c + s\).
Theorem (Mantero-Xie)

Assume I is a stretched perfect ideal that is generically a complete intersection. Recall $c = \text{height } I$.

(a) If $c \leq 3$ and R/I is not Gorenstein then I/I^2 is not Cohen-Macaulay.

(b) If $c \geq 4$ then I/I^2 is not Cohen-Macaulay.

Corollary (Mantero-Xie)

Question A is true for ideals defining stretched algebras.
Sketch of the proof: Since I is generically a complete intersection of height c, by the Associativity formula,
\[e(R/I^2) = (c + 1)e(R/I) = (c + 1)(c + s). \]

Assume by contradiction that I/I^2 is Cohen-Macaulay. Since R/I is also Cohen-Macaulay, the short exact sequence
\[0 \rightarrow I/I^2 \rightarrow R/I^2 \rightarrow R/I \rightarrow 0 \]
shows that R/I^2 is Cohen-Macaulay as well, hence there exists a regular sequence y on R that generates a minimal reduction of $m_{R/I}$ and m_{R/I^2}.

After modulo y, we may assume that R is a c-dimensional regular local ring, I is a stretched m-primary ideal of socle degree s and
\[\lambda(R/I^2) = (c + 1)(c + s). \]
However, since R/I is a stretched Artinian local ring of socle degree s, our next step is to use information on the Hilbert Function of R/I (sometimes together with the non-Gorenstein assumption on R/I) to estimate the length of R/I^2.

Finally these estimates shows that $\lambda(R/I^2) > (c + 1)(c + s)$, contradicting the above equality and showing that if R/I is not Gorenstein then I/I^2 cannot be Cohen-Macaulay.
To estimate the length of R/I^2, we need the following structure theorem for ideals defining 0-dimensional stretched local rings.

Theorem (Sally, Elias-Valla)

Assume $\dim R = c$. Let $I \subseteq m^2$ be an m-primary ideal with R/I stretched of socle degree s. Write $\tau(R/I) = r + 1$ for some $0 \leq r \leq c - 1$. Then there exist minimal generators x_1, \ldots, x_c for the maximal ideal m and elements $u_{r+1}, \ldots, u_{c-1} \notin m$ with

$$I = (x_1m, \ldots, x_rm) + J$$

where

$$J = (x_{r+i}x_{r+j} \mid 1 \leq i < j \leq c-r) + (x_c^s - u_{r+i}x_{r+j}^2 \mid 1 \leq i \leq c-r-1)$$

if $r < c - 1$ and $J = (x_c^{s+1})$ if $r = c - 1$.
We now employ the knowledge of this class of ideals to obtain precise information about their square.

Proposition (Mantero-Xie)

Let R and I be the same as in the above theorem. Then\n
\[I^2 \subseteq L = (x_1, \ldots, x_{c-1})H + (x_1, \ldots, x_{c-1})x_c^{s+1} + (x_c^{2s}), \]

where H is the monomial ideal generated by all monomials of degree 3 in x_1, \ldots, x_c except for x_3^c. The above inclusion is strict if and only if \(\tau(R/I) \geq c - 1 \), and in this case \(\lambda(R/I^2) \geq \lambda(R/L) + 2 \).

The result is used to obtain tight estimates for the Hilbert Function of \(R/I^2 \), indeed it shows that one can replace \(I^2 \) by the ‘monomial’ ideal \(L \) without changing too much the Hilbert Function.
The Hilbert Function of R/L has the shape:

1 c h_2 h_3 ...

where $h_{j+1} \geq c$, $3 \leq j \leq s$ and $h_j \geq 1$, $s + 2 \leq j \leq 2s - 1$.

Therefore

\[
\lambda(R/I^2) \geq \lambda(R/L) \geq 1 + c + \binom{c+1}{2} + \binom{c+2}{3} + c(s - 2) + s - 2
\]

which is strictly greater than $(c + 1)(c + s)$ if $c \geq 4$.

Hence, if $c \geq 4$, $\lambda(R/I^2) > (c + 1)(c + s)$, a contradiction.

If $c = 3$, this amount actually equals $(c + 1)(c + s)$. However, since R/I is not Gorenstein, $\tau(R/I) \geq 2 = c - 1$. Again by the above proposition, $\lambda(R/I^2) > \lambda(R/L) = (c + 1)(c + s)$.
Case 2. Short algebras.

Set \(n_j = \binom{c+j-1}{j-1} \) and \(N_j = \binom{c+j}{j} \).

Definition

An Artinian local ring \((A, n)\) is short if there exist integers \(c \) and \(s \) with \(HF_A(j) = n_j \) for every \(j < s \), \(HF_A(s) = n_s - q \), \(0 \leq q < n_s \), and \(HF_A(s+1) = 0 \).

Let \(I \) be a perfect ideal in \(R \), \(I \) is short (or \(R/I \) is short) if \(R/(I + (y)) \) is a short Artinian local ring for any \((y)\) a minimal reduction of \(m_{R/I} \).
The Hilbert function of a short Artinian local ring \((A, \mathfrak{n})\):

\[
1 \quad c \quad n_2 \quad n_3 \quad \ldots \quad n_{s-1} \quad n_s - q \quad 0 \rightarrow
\]

Thus if \(I\) is short with \(\text{socdeg}(R/I) = s\), then

\[
e(R/I) = \sum_{i=0}^{s} n_i - q = N_s - q.
\]
Theorem (Mantero-Xie)

Assume I is a short perfect ideal that is generically a complete intersection.

(a) If $s = \text{socdeg}(R/I) \geq 3$ and $c \geq 2$, then I/I^2 is not Cohen-Macaulay.

(b) If $s = \text{socdeg}(R/I) = 2$ and its multiplicity satisfies some numerical conditions, then I/I^2 is not Cohen-Macaulay.

Corollary (Mantero-Xie)

Question A is true for any short ideal I with socle degree at least 3 or socle degree 2 with multiplicity satisfying some numerical conditions.
Sketch of the proof: Part(a). As before, assume I/I^2 is Cohen-Macaulay. After moding out a minimal reduction, we may assume R/I is a short Artinian local ring of socle degree s with length $\lambda(R/I^2) = (c + 1)e(R/I) = (c + 1)(N_s - q)$.

On the other hand, since $I^2 \subseteq \mathfrak{m}^{2s}$,
$\lambda(R/I^2) \geq \lambda(R/\mathfrak{m}^{2s}) = \sum_{i=0}^{2s-1} n_i = N_{2s-1}$.

Hence, to finish the proof, it is enough to show that $N_{2s-1} > (c + 1)(N_s - q)$ for all $c \geq 2$ and $s \geq 3$.

Let $Q(c, s) = N_{2s-1} - (c + 1)N_s$. We can prove that if $Q(\bar{c}, \bar{s}) > 0$ for some positive integers $\bar{c} \geq 2$ and $\bar{s} \geq 3$, then $Q(c, s) > 0$ for every $c \geq \bar{c}$ and $s \geq \bar{s}$.
Since $Q(5, 4) = 6 > 0$, $Q(4, 5) = 17 > 0$, $Q(3, 6) = 7 > 0$ and $Q(2, 8) = \frac{1}{3} > 0$, it follows that $Q(c, s) > 0$ either if $c \geq 5$, $s \geq 4$, or if $c \geq 4$, $s \geq 5$, or if $c \geq 3$, $s \geq 6$ or if $c \geq 2$, $s \geq 8$.

The few cases left out can be done by direct computations.

Part (b) is proved by using similar methods and estimates.
Case 3. Algebras having low multiplicity.

Let $I \subseteq m^2$ be a perfect ideal in R. It is well-known (by Abhyankar’s inequality) that $e(R/I) \geq c + 1$, where $c = \text{height } I$. We will refer to ideals I with $e(R/I) \leq c + 4$ as ‘ideals with low multiplicity’.

Theorem (Mantero-Xie)

Let I be a perfect ideal that is generically a complete intersection. Assume $e(R/I) \leq c + 4$. If R/I is not Gorenstein, then I/I^2 is not Cohen-Macaulay.
One application of the previous result is to show that for some ideals defining a monomial curve, the Cohen-Macaulayness of the first conormal module forces the ideal (hence the monomial curve) to be Gorenstein.

Corollary (Mantero-Xie)

Let $S = k[t^{a_1}, \ldots, t^{a_n}]$ for some $a_1 \leq a_2 \leq \cdots \leq a_n$ and assume that none of the a_i’s is redundant. Let $R = k[X_1, \ldots, X_n]$ and I the homogeneous R-ideal defining S. If $a_1 \leq n + 3$ then Question A holds true for I.

Negative examples

We showed that for ideals with multiplicity up to $c + 4$, Question A has a positive answer. However, in multiplicity $c + 5$, there is an example for which Question A has a negative answer. It has been found by J. C. Migliore using CoCoA.

Example

(a) (Migliore) Assume $S = \mathbb{Q}[a, b, c, d, e, f]$ is a polynomial ring. Then for a homogeneous level ideal I in S defining 10 general points, Question A has a negative answer. In particular, one has $\dim(S/I) = 1$, $c = 5$, $e(S/I) = c + 5$, S/I is a short algebra with $\text{socdeg}(S/I) = 2$ and $\tau(S/I) = 4$.

(b) There exist a regular local ring R and a prime ideal \mathfrak{p} with $e(R/\mathfrak{p}) = c + 5$ for which Question A has a negative answer.
Using CoCoA, it has been found that also for the ideal defining 12 (general) points in \mathbb{P}^6, Question A has a negative answer. Similarly for 15 (general) points in \mathbb{P}^7. We suggest that for every $c \geq 5$, the smallest set of (general) points of \mathbb{P}^c defining an ideal that is not covered by our theorem gives an ideal for which Question A has a negative answer. If true, this would provide a class of examples in any codimension at least 5 for which Question A has a negative answer.

Let $\lceil x \rceil$ denote the smallest integer bigger than or equal to x.

Question B

Is it true that, for any $c \geq 5$, the ideal defined by a set of $1 + c + \lceil \frac{c(c-1)}{6} \rceil$ general points in \mathbb{P}^c gives a negative answer to Question A?

Computations made by J. C. Migliore confirmed that Question B holds true for any $c \leq 9$.
Acknowledgments

We are grateful to the AMS, for both organizing and generously supporting the MRC week in the wonderful location of Snowbird, UT; the inspiration for many ideas of this paper came out during that week.

We would like to thank warmly the organizers of the MRC, D. Eisenbud, C. Huneke, M. Mustata and C. Polini. Their strong support and passionate work made the MRC week a successful and unforgettable experience.

Finally, we would like to thank Claudia Polini, Bernd Ulrich, Craig Huneke, Juan Migliore for generously giving us precious suggestions and ideas which lead to improvements of this work.