Lecture 3

Two-stage stochastic linear programs

January 13, 2016
Introduction

Consider the two-stage stochastic linear program defined as

<table>
<thead>
<tr>
<th>SLP</th>
<th>minimize (c^T x + Q(x))</th>
<th>subject to (Ax = b,) (x \geq 0,)</th>
</tr>
</thead>
</table>

where \(Q(x) \) is defined as follows:

\[
Q(x) \triangleq \mathbb{E}[Q(x, \xi)].
\]

If \(\xi(\omega) \triangleq (T(\omega), W(\omega), q(\omega), b(\omega)) \), then the integrand of this expectation, denoted by \(Q(x, \xi) \), is the optimal value of the following second-stage
problem:

\[
\text{SecLP}(\xi) \quad \begin{array}{ll}
\text{minimize} & q(\omega)^T y(\omega) \\
\end{array}
\]
subject to
\[
T(\omega)x + W(\omega)y(\omega) = b(\omega) \quad y(\omega) \geq 0.
\]

- \(T(\omega)\) is referred to as the tender

- \(W(\omega)\) is called the recourse matrix
Discrete random variables

- Suppose ξ is a discrete random variable taking on values in Ξ.
- Suppose K_1 and $K_2(\xi)$ (elementary feasibility set) are defined as

\[K_1 \triangleq \{ x : Ax = b, x \geq 0 \} \]

and

\[K_2(\xi) \triangleq \{ x : y \geq 0 \quad \text{subject to} \quad W(\omega)y = h(\omega) - T(\omega)x \} . \]

- Moreover, K_2 is defined as

\[K_2 \triangleq \bigcap_{\xi \in \Xi} K_2(\xi). \]
Next, we prove some useful properties of $K_2(\xi)$ but need to define the positive hull:

Definition 1 (Positive hull) The positive hull of W is defined as

$$\text{pos } W \triangleq \{ t : W y = t, y \geq 0 \}.$$

In fact, $\text{pos } W$ is a finitely generated cone which is the set of nonnegative linear combinations of finitely many vectors. Note that it is convex and polyhedral.

Proposition 1 (Polyhedrality of $K_2(\xi)$ and K_2) The following hold:

1. For a given ξ, $K_2(\xi)$ is a convex polyhedron;
2. When ξ is a finite discrete random variable, K_2 is a convex polyhedron.

Proof:
(i) Consider an \(x \not\in K_2(\xi) \) and \(\xi = (T(\omega), W(\omega), q(\omega), b(\omega)) \). Consequently there exists no nonnegative \(y \) such that \(W(\omega)y = h(\omega) - T(\omega)x \); equivalently \(h(\omega) - T(\omega)x \not\in \text{pos} \, W(\omega) \), where \(\text{pos} \, W(\omega) \) is a finitely generated convex cone. Therefore, by the separating hyperplane theorem, there exists a hyperplane, defined as \(H \), such that \(H = \{ v : u^Tv = 0 \} \) such that \(u^T(h(\omega) - T(\omega)x) < 0 \) and \(u^Tv > 0 \) where \(v \in \text{pos} \, W(\omega) \). Since \(\text{pos} \, W(\omega) \) is a finitely generated cone, there can only be finitely many such hyperplanes. It follows that \(K_2(\xi) \) can be viewed as an intersection of a finite number of halfspaces and is therefore a convex polyhedron.

(ii) Since \(K_2 \) is an intersection of a finite number of polyhedral sets, \(K_2 \) is a convex polyhedron.

\[\square \]

- Next, we examine the properties of \(Q(x, \xi) \)
Proposition 2 (Piecewise linearity of $Q(x, \xi)$) For a given ξ, $Q(x, \xi)$ satisfies the following:

(i) $Q(x, \xi)$ is a piecewise linear convex function in (h, T)

(ii) $Q(x, \xi)$ is a piecewise linear concave function in q

(iii) $Q(x, \xi)$ is a piecewise linear convex function in x for $x \in K_2$

Proof:

(i) Suppose $f(b)$ is defined as $f(b) = \min \{q^T y : W y = b, y \geq 0\}$. We proceed to show that $f(b)$ is convex in b. Consider b_1, b_2 such that $b_\lambda = \lambda b_1 + (1 - \lambda)b_2$ where $\lambda \in (0, 1)$. Let y_1 and y_2 denote solutions of $\{q^T y : W y = b, y \geq 0\}$ for $b = b_1$ and b_2 respectively. Furthermore, suppose y_λ denotes the solution of $\min \{q^T y : W y = b_\lambda, y \geq 0\}$ and it follows that

$$f(b_\lambda) = q^T y_\lambda \leq q^T y_1, q^T y_2.$$
Consequently,

\[f(b_\lambda) = q^T y_\lambda \leq q^T (\lambda y_1 + (1 - \lambda)y_2) \]

\[= \lambda q^T y_1 + (1 - \lambda) q^T y_2 \]

\[= f(b_1) \]

\[= f(b_2) \]

\[= \lambda f(b_1) + (1 - \lambda) f(b_2), \]

where \(\lambda y_1 + (1 - \lambda)y_2 \) is feasible with respect to the constraint \(\{ y : Wy = b_\lambda \} \). The convexity of \(f \) in \((T, h) \) follows.

(ii) To show the concavity of \(Q(x, \xi) \) in \(q \), we may write \(f(q) \) as

\[f(q) = \max \{ \pi^T b : W^T \pi \leq q \}. \]

Proceeding as earlier, it is relatively easy to show that \(f(q) \) is concave
in \(q \).

(iii) Next, we show the piecewise linearity of \(Q(x, \xi) \) in \((h, T)\). Suppose \(y \) is a solution of \(\min \{ q^T y : Wy = b, y \geq 0 \} \). Then if \(y_B \) and \(y_N (\equiv 0) \) denote the basic and non-basic variables and \(B(\omega) \) denotes the basis and \(N(\omega) \) represents the remaining columns, we have

\[
B(\omega)y_B + N(\omega)y_N = h(\omega) - T(\omega)x
\]

\[
B(\omega)y_B = h(\omega) - T(\omega)x
\]

\[
y_B = (B(\omega))^{-1}(h(\omega) - T(\omega)x).
\]
Recall that when a feasible basis is optimal, we have that

\[q(\omega)^T \tilde{y} \geq q_B(\omega)^T y_B \]
\[= q_B(\omega)^T (B(\omega))^{-1}(h(\omega) - T(\omega)x) \]
\[= Q(x, \xi), \]

implying that \(Q(x, \xi) \) is linear in \((h, T, q, x)\) on a domain prescribed by feasibility and optimality conditions. Piecewise linearity follows from noting the existence of a finite number of different optimal bases for the second-stage program.
Support functions

The support function $s_C(\bullet)$ of a nonempty convex set C is defined as

$$s(h) \triangleq \sup_{z \in C} z^T h.$$

The support function $s(\bullet)$ is convex, positively homogeneous,* and lower semicontinuous†

If $s_1(\bullet)$ and $s_2(\bullet)$ are support functions of C_1 and C_2 respectively, then

$$s_1(\bullet) \leq s_2(\bullet) \iff C_1 \subset C_2.$$

*A function $f(x)$ is positively homogeneous if $f(\lambda x) = \lambda f(x)$ where $\lambda \geq 0$ and $x \in \mathbb{R}^n$.

†A function $f(x)$ is lower semicontinuous at x_0 if $\lim_{x \to x_0} \inf f(x) \geq f(x_0)$.

Stochastic Optimization
Furthermore,
\[s_1(\bullet) = s_2(\bullet) \iff C_1 = C_2. \]

Example 1 (Support function of unit ball) Consider the unit ball \(\mathcal{B} \) defined with the Euclidean norm as follows

\[\mathcal{B} \triangleq \{ \pi : \|\pi\|_2 \leq 1 \}. \]

Then \(s_\mathcal{B}(\cdot) = \|\cdot\|_2 \).

By definition, we have that

\[s_\mathcal{B}(\chi) = \sup_{\pi \in \mathcal{B}} \pi^T \chi. \]

Since \(\mathcal{B} \) is a compact set, by the continuity of the objective, the supremum is achieved. Suppose the maximizer is denoted by \(\pi^* \). Then, \(\|\pi^*\| \leq 1 \) and
it follows that $\pi^* = \frac{\chi}{\|\chi\|}$. Consequently,

$$(\pi^*)^T \chi = \frac{\chi^T}{\|\chi\|} \chi = \frac{\|\chi\|^2}{\|\chi\|} = \|\chi\|.$$
Subgradients of $Q(x, \xi)$

Consider the second-stage linear program given by

\[
\text{SecLP}(\xi) \quad \text{minimize} \quad y(\omega) q(\omega)^T y(\omega) \\
\text{subject to} \quad T(\omega)x + W(\omega)y(\omega) = b(\omega) \\
\quad y(\omega) \geq 0.
\]

Then the associated dual problem is given by

\[
\text{D-SecLP}(\xi) \quad \text{maximize} \quad \pi(\omega) b(\omega)^T \pi(\omega) \\
\text{subject to} \quad W^T(\omega)\pi(\omega) \leq q(\omega).
\]
Let \(s_q(\chi) \triangleq \inf \{ q^T y : Wy = \chi, y \geq 0 \} \). Suppose \(\Pi(q) \) is defined as

\[\Pi(q) \triangleq \{ \pi : W^T \pi \leq q \}. \]

It follows that

\[s_q(x) = \sup_{\pi \in \Pi(q)} \pi^T \chi. \]

This implies that \(s_q(\chi) \) is the support function of \(\Pi(q) \), a closed and convex polyhedral set. If \(\Pi(q) \) is empty, then \(s_q(\chi) = +\infty \) or \(-\infty\).

Next we examine the subdifferential of \(Q(x, \xi) \) and need some definitions.

Definition 2 (Differentiability) Given a mapping \(g : \mathbb{R}^n \to \mathbb{R}^m \). It is said that \(g \) is directionally differentiable at a point \(x_0 \in \mathbb{R}^n \) in a direction
$h \in \mathbb{R}^n$ if the following limit exists:

$$g'(x_0; h) := \lim_{t \to 0} \left(\frac{g(x_0 + th) - g(x_0)}{t} \right).$$

If g is directionally differentiable at x_0 for every $h \in \mathbb{R}^n$, then it is said to be directionally differentiable at x_0. Note that whenever this limit exists, $g'(x_0; h)$ is said to be positively homogeneous in h or $g'(x_0; th) = tg'(x_0; h)$ for any $t \geq 0$.

If $g(x)$ is directionally differentiable at x_0 and $g'(x_0; h)$ is linear in h, then $g(x)$ is said to be Gâteaux differentiable at x_0. This limit can also be written as follows:

$$g(x_0 + h) = g(x_0) + g'(x_0; h) + r(h),$$
where $r(h)$ is such that $\frac{r(th)}{t} \to 0$ as $t \to 0$ for any fixed $h \in \mathbb{R}^n$.

If $g'(x_0; h)$ is linear in h and $\frac{r(h)}{||h||} \to 0$ as $h \to 0$ (or $r(h) = o(h)$), then $g(x)$ is said to be Fréchet differentiable at x_0 or merely differentiable at x_0.

Note that Fréchet implies Gâteaux differentiability and when the functions are locally Lipschitz, both notions coincide. Recall that a mapping g is said to be locally Lipschitz on a set $X \subset \mathbb{R}^n$, if it is Lipschitz continuous on a neighborhood of every point of X (with possibly different constants).

A vector $z \in \mathbb{R}^n$ is said to be a subgradient of $f(x)$ at x_0 if

$$f(x) - f(x_0) \geq z^T(x - x_0), \quad \forall x \in \mathbb{R}^n.$$

The set of all subgradients of $f(x)$ at x_0 is referred to as a subdifferential.
and is denoted by $\partial f(x_0)$. The subdifferential $\partial f(x_0)$ is a closed and convex subset of \mathbb{R}^n and f is subdifferentiable at x_0 if $\partial f(x_0) \neq \emptyset$.

Proposition 3 (Convexity and polyhedrality of $Q(x, \xi)$) For any given ξ, the function $Q(., \xi)$ is convex. Moreover, if the set $\Pi(q)$ is nonempty and D-SecLP(ξ) is feasible for at least one x, then the function $Q(., \xi)$ is polyhedral.

Proof: Recall that the set $\Pi(q)$ is closed, convex, and polyhedral. If $\Pi(q)$ is nonempty, then $s_q(\chi)$, its support function, is polyhedral\(^\dagger\) where $\chi = h - Tx$. Furthermore, $s_q(\chi)$ is positively homogeneous. If $\Pi(q)$ is empty, the infimum given by

$$\inf\{q^T y : Wy = \chi, y \geq 0\}$$

\(^\dagger\)Recall that an extended real-valued function is called polyhedral, if it is proper,\(^\S\) convex, and lower semicontinuous, its domain is a closed and convex polyhedron, and it is piecewise linear on its domain.
can be $+\infty$ or $-\infty$. Finally, since $Q(x, \xi) = s_q(\chi)$, the result follows.

Next we characterize the subdifferential of $Q(x, \xi)$ but require the Fenchel-Moreau theorem:

Theorem 4 (Fenchel-Moreau) Suppose that f is a proper, convex, and lower semicontinuous function. Then $f^{**} = f$, where f^*, the conjugate function of f, is defined as $f^*(z) = \sup_{x \in \mathbb{R}^n} \{ z^T x - f(x) \}$.

Note that the conjugate function $f^* : \mathbb{R}^n \to \bar{\mathbb{R}}$ is always convex and lsc. Furthermore, we have that

$$
\partial f^*(x) = \arg\max_{z \in \mathbb{R}^n} \{ z^T x - f(z) \}.
$$

Proposition 5 (Subdifferential of $Q(x, \xi)$) Suppose that for a given $\xi \in \Xi$, the function $Q(x, \xi)$ is finite. Then $Q(x, \xi)$ is subdifferentiable at x_0 and

$$
\partial Q(x_0, \xi) = -T^T D(x_0, \xi),
$$
where $\mathcal{D}(x, \xi)$ the set of dual solutions is defined as

$$
\mathcal{D}(x, \xi) := \arg \max_{\pi \in \Pi(q)} \pi^T (h - Tx).
$$

Proof: Since $Q(x_0, \xi)$ is finite, then $\Pi(q)$ is nonempty and $s_q(\chi)$ is its support function. By the definition of a conjugate function, it can be seen that $s_q(\chi)$ is the conjugate of the indicator function $1_{l_q}(\pi)$, defined as

$$
1_{l_q}(\pi) := \begin{cases}
0, & \text{if } \pi \in \Pi(q) \\
+\infty, & \text{otherwise.}
\end{cases}
$$

Since $\Pi(q)$ is closed and convex, the function $1_{l_q}(\pi)$ is convex and lower semicontinuous. By the Fenchel-Moreau theorem, the conjugate of $s_q(.)$ is
\[\mathbb{1}_{l_q}(.) \text{ and for } \chi_0 = h - T x_0, \text{ we have} \]

\[\partial s_q(x_0) = \arg \max_{\pi} \left\{ \pi^T \chi_0 - \mathbb{1}_q(\pi) \right\} = \arg \max_{\pi \in \Pi(q)} \pi^T \chi_0. \]

Since \(\Pi(q) \) is polyhedral and \(s_q(\chi_0) \) is finite, it follows that \(\partial s_q(\chi_0) \) is nonempty. Moreover, \(s_q(.) \) is piecewise linear (earlier in this lecture) and by the chain rule

\[\partial_x Q(x, \xi) = (\partial_x \chi_0)^T \partial \chi_0 s_q(\chi_0) = -T^T D(x_0, \xi). \]
Expected recourse for discrete distributions

In this section, we consider the expected cost of recourse, denoted by $Q(x)$, where

$$Q(x) \triangleq \mathbb{E}[Q(x, \xi)].$$

Suppose, the distribution of ξ has finite support, implying that ξ can take on a finite number of realizations given by ξ_1, \ldots, ξ_K with a mass function denoted by p_1, \ldots, p_K. For a given x, y_j is given by the solution to

$$\text{SecLP}(\xi_j) \quad \text{minimize} \quad q_j^T y_j$$
$$\text{subject to} \quad T_j x + W_j y_j = b_j$$
$$y_j \geq 0,$$

where $(T(\xi_j), W(\xi_j), q(\xi_j), b(\xi_j)) = (T_j, W_j, q_j, b_j)$. Given that the
problems in y are separable, we may specify the expected cost of recourse as the following problem in (y_1, \ldots, y_K) as follows:

\[
\text{SecLP}(\xi_1, \ldots, \xi_K) \quad \text{minimize} \quad \sum_{j=1}^{K} p_j q_j^T y_j \\
\text{subject to} \quad T_j x + W_j y_j = b_j, \quad j = 1, \ldots, K \\
y_j \geq 0, \quad j = 1, \ldots, K
\]
Note that the entire two-stage problem can then be specified as follows:

<table>
<thead>
<tr>
<th>SLP</th>
<th>minimize</th>
<th>(c^T x + \sum_{j=1}^{K} p_j q_j^T y_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>subject to</td>
<td>(Ax = b)</td>
</tr>
<tr>
<td></td>
<td>subject to</td>
<td>(T_jx + W_jy_j = b_j, \quad j = 1, \ldots, K)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(x, y_j \geq 0, \quad j = 1, \ldots, K)</td>
</tr>
</tbody>
</table>

The subdifferential of \(Q(x) \) is specified by the following proposition.

Proposition 6 (Subdifferential of \(\partial Q(x) \)) Suppose that the probability distribution function for \(\xi \) has finite support or \(\Xi = \{ \xi_1, \ldots, \xi_K \} \) and the expected recourse cost has a finite value for at least some \(\tilde{x} \in \mathbb{R}^n \).
Then $Q(x)$ is polyhedral and

$$\partial Q(x_0) = \sum_{j=1}^{K} \partial Q(x, \xi_j).$$

Proof: This follows as a consequence of the Moreau-Rockafellar theorem.

Theorem 7 (Moreau-Rockafellar) Let $f_i : \mathbb{R}^n \to \bar{\mathbb{R}}$ be proper convex functions for $i = 1, \ldots, N$. Let $f(.) = \sum_{i=1}^{N} f_i(.)$ and x_0 be a point such that $f_i(x_0)$ are finite or $x_0 \in \cap_{i=1}^{N} \text{dom } f_i$. Then

$$\partial f_1 + \ldots + \partial f_N \subset \partial f.$$
Furthermore, we have equality in this relationship or

\[\partial f_1 + \ldots + \partial f_N = \partial f, \]

if one of the following hold:

1. The set \(\cap_{i=1}^m \text{ri}(\text{dom} f_i) \) is nonempty;

2. the functions \(f_1, \ldots, f_k \) for \(k \leq m \) are polyhedral and the intersection of the sets \(\cap_{i=1}^k \text{dom} f_i \) and \(\cap_{i=k+1}^m \text{ri}(\text{dom} f_i) \) is nonempty;

3. there exists a point \(\bar{x} \in \text{int}(\text{dom} f_i), i = 1, \ldots, m. \)
Expected recourse for general distributions

Consider \(Q(x, \xi) \) where \(\xi : \Omega \to \mathbb{R}^d \). The cost of taking recourse given \(\xi \) is the minimum value of \(q(\omega)^T y(\omega) \).

Lemma 1 \(Q(x, \xi) \) is a random lower semicontinuous function.

Proof: This follows from noting that \(Q(.,.) \) is measurable with respect to the Borel sigma algebra on \(\mathbb{R}^n \times \mathbb{R}^d \). Furthermore, \(Q(.,\xi) \) is lower semicontinuous. It follows that \(Q(x, \xi) \) is a random lower semicontinuous function. \(\blacksquare \)

Proposition 8 Suppose either \(\mathbb{E}[Q(x, \xi)]^+ \) or \(\mathbb{E}[Q(x, \xi)]^- \) is finite. Then, \(Q(x) \) is well defined.

Proof: This requires verifying whether \(Q(x, .) \) is measurable with respect to the Borel sigma algebra on \(\mathbb{R}^d \). This follows by directly employing Theorem 7.37 [SDR09].
Theorem 9 Let $F : \mathbb{R}^n \times \Omega \rightarrow \overline{\mathbb{R}}$ be a random lower semicontinuous function. Then the optimal value function $\vartheta(\omega)$ and the optimal solution multifunction $X^*(\omega)$ are both measurable where

$$\vartheta(\omega) \triangleq \inf_{y \in \mathbb{R}^n} F(y, \omega) \text{ and } X^*(\omega) \triangleq \arg \min_{x \in \mathbb{R}^n} F(x, \omega).$$

Next, we consider several settings where either $\mathbb{E}[Q(x, \xi)^+]$ or $\mathbb{E}[Q(x, \xi)^-]$ is finite. However, this requires taking a detour in discussing various notions of recourse.
Notions of recourse

- The two-stage problem is said to have fixed recourse if $W(\omega) = W$ for every $\omega \in \Omega$.

- The problem is said to have complete recourse if there exists a solution y satisfying $W y = \chi$ and $y \geq 0$ for every χ. In effect, for any first-stage decision, the primal second-stage problem is feasible. More formally, this can be stated as follows:

$$\text{pos} W = \mathbb{R}^m,$$

where $h - Tx \in \mathbb{R}^m$.

- By employing duality, the fixed recourse is said to be complete if and only if the feasible set $\Pi(q)$ of the second-stage dual problem is bounded.
Complete recourse ⇔ Primal second-stage is feasible
⇔ Dual second-stage is bounded (could be empty).

• Given a set X, then X_{∞} refers to the recession cone of X and is defined as follows:

$$X_{\infty} \triangleq \{ y : \forall x \in X, x + \lambda y \in X, \lambda \geq 0 \} .$$

• Boundedness of $\Pi(q)$ implies that its recession cone denoted by $\Pi_0 = \Pi(0)$ contains only the zero element; $\Pi_0 = \{0\}$, provided that $\Pi(q)$ is nonempty.
• **Claim:** $\Pi(q)$ is nonempty and bounded implies that Π_0 contains only the zero element.

Proof sketch: Suppose this claim is false. Then $\Pi_0 \neq \emptyset$ and suppose $u \in \Pi_0$. This implies that $W^T u \leq 0$ where $u \neq 0$. Since $\Pi(q)$ is nonempty, then it contains at least one element, say $\hat{\pi}$. It follows that

$$W^T(\hat{\pi} + \lambda u) \leq W^T \hat{\pi} \leq q,$$

for all $\lambda \geq 0$. This implies that $\Pi(q)$ is unbounded since it contains a ray given by $\hat{\pi} + \lambda u$ where $\lambda \geq 0$ and $\hat{\pi} \in \Pi(q)$.

• A subclass of problems with fixed and complete recourse are **simple recourse** problems where the recourse decisions are either surplus or shortage decisions determined by the first-stage decisions. Furthermore, T and q are deterministic and $q > 0$.

Stochastic Optimization 30
Specifically, \(y(\omega) = y^+(\omega) + y^-(\omega) \). If \([h - Tx]_i \geq 0\), \(y^+_i(\omega) = [h - Tx]_i \) and \(y^-_i(\omega) = 0 \). Similarly, if \([h - Tx]_i \leq 0\), \(y^-_i(\omega) = [h - Tx]_i \) and \(y^+_i(\omega) = 0 \). This is compactly captured by defining \(W = (I - I) \), leading to the following system:

\[
\begin{align*}
y^+(\omega) - y^-(\omega) &= h(\omega) - Tx \\
y^+(\omega), y^-(\omega) &\geq 0.
\end{align*}
\]

- The recourse is said to be **relatively complete** if for every \(x \) in the set
 \(X \triangleq \{ x : Ax = b, x \geq 0 \} \), the feasible set of the primal second-stage
 problem is nonempty for a.e. \(\omega \in \Omega \). Note that there may be events that
 occur with zero probability (measure) that may have \(Q(x, \xi) = +\infty \). However, these do not affect the overall expectation.

- A sufficient condition for **relatively complete recourse** is the following:

 for every \(x \in X, Q(x, \xi) < +\infty \) for all \(\xi \in \Xi \).
• Note that this condition becomes necessary and sufficient in two cases:
 • The vector ξ has finite support
 • Fixed recourse

• Next we consider an instance of a problem with random recourse and discuss some concerns.

Example 2 (Random recourse) Suppose $Q(x, \xi) := \inf\{y : \xi y = x, y \geq 0\}$, with $x \in [0, 1]$ and ξ having a density function given by $p(z) = 2z, 0 \leq z \leq 1$. Then for $\xi > 0$, $x \in [0, 1]$, $Q(x, \xi) = x/\xi$ and $\mathbb{E}[Q(x, \xi)] = 2x$. For $\xi = 0$ and $x > 0$, $Q(x, \xi) = +\infty$. It can be seen that for almost every $\xi \in [0, 1]$, $Q(x, \xi) < +\infty$.

However, a small perturbation in the distribution may change that. For instance, a discretization of the distribution with the first point at
\(\xi = 0 \), immediately leads to \(\mathbb{E}[Q(x, \xi)] = +\infty \) for \(x > 0 \). In effect, this problem is unstable and this issue cannot occur if the recourse is fixed.

- We now consider the support function \(s_q \) associated with \(\Pi(q) \). Recall that this is defined as

\[
s_q(\chi) = \sup_{\pi \in \Pi(q)} \pi^T \chi.
\]

Our goal lies in finding sufficiency conditions for the existence of the Expectation \(\mathbb{E}[s_q(\chi)] \). We will employ Hoffman’s Lemma [SDR09, Theorem 7.11] which is defined as follows:

Lemma 2 (Hoffman’s lemma) Consider the multifunction \(\mathcal{M}(b) := \{x : Ax \leq b\} \), where \(A \in \mathbb{R}^{m \times n} \). Then there exists a positive constant
\(\kappa, \) depending on \(A, \) such that for any given \(x \in \mathbb{R}^n \) and any \(b \in \text{dom} \mathcal{M}, \)

\[
\text{dist}(x, \mathcal{M}(b)) \leq \kappa \| (Ax - b)_+ \|.
\]

- By Hoffman’s Lemma, there exists a constant \(\kappa \) depending on \(W \) such that if for some \(q_0, \) the set \(\Pi(q_0) \) is nonempty, then for every \(q, \) the following inclusion holds:

\[
\Pi(q) \subset \Pi(q_0) + \kappa \| q - q_0 \| B,
\]

where \(B := \{ \pi : \| \pi \| \leq 1 \} \) and \(\| . \| \) denotes the Euclidean norm. This inclusion allows for deriving an upper bound for the support function \(s_q(\cdot). \)

- Since the support function of the unit ball is the Euclidean norm, when \(\Pi(q_0) \) is nonempty, and that

\[
 s_1(\cdot) \leq s_2(\cdot) \Leftrightarrow C_1 \subset C_2,
\]
we have that

\[s_q(\bullet) \leq s_{q_0}(\bullet) + \kappa \| q - q_0 \| \| \bullet \|. \] \hspace{1cm} (1)

- Consider \(q_0 = 0 \) and the set \(\Pi(0) \) is defined as

\[\Pi(0) \triangleq \{ \pi : W^T \pi \leq 0 \} . \]

This set is a cone and suppose its support function is denoted by \(s_0 = s_{q_0} \).

- The support function is defined as follows (proof omitted):

\[s_0(\xi) = \begin{cases}
0, & \text{if } \chi \in \text{pos } W \\
+\infty, & \text{otherwise}
\end{cases} \]
Therefore, if $q_0 = 0$ in (1) allows one to claim that if $\Pi(q)$ is nonempty, then $s_q(\chi) \leq \kappa \|q\| \|\chi\|$ for all $\chi \in \text{pos } W$, and $s_q(\chi) = +\infty$ if $\chi \not\in \text{pos } W$.

By the polyhedrality of $\Pi(q)$, if $\Pi(q)$ is nonempty, we have that $s_q(\cdot)$ is piecewise linear on its $\text{dom}(s_q(\cdot))$ which is given by $\text{pos } W$. In fact, $s_q(\cdot)$ is Lipschitz continuous on its domain or

$$|s_q(\chi_1) - s_q(\chi_2)| \leq \kappa \|q\| \|\chi_1 - \chi_2\|. $$

We now provide a necessary and sufficient condition for a fixed recourse problem having a finite $\mathbb{E}[Q(x, \xi)_+]$.

Proposition 10 (Nec. and suff. condition for finiteness of $\mathbb{E}(Q(x, \xi)_+)$)

Suppose that recourse is fixed and $\mathbb{E}[\|q\| \|h\|] < +\infty$ and $\mathbb{E}[\|q\| \|T\|] < +\infty$. Consider a point $x \in \mathbb{R}^n$. Then $\mathbb{E}[Q(x, \xi)_+]$ is finite if and only if $h(\xi) - T(\xi)x \in \text{pos } W$ for almost every ξ.

Stochastic Optimization
Proof:

(⇒) Suppose \(h(\xi) - T(\xi)x \not\in \text{pos } W \) with probability one. This implies that for some \(\xi \in U \subseteq \Xi \), \(h(\xi) - T(\xi)x \not\in \text{pos } W \) where \(\mu(U) = \mathbb{P}[\xi : \xi \in U] > 0 \). But for any such \(\xi \), \(Q(x, \xi) = +\infty \). But \((Q(x; \xi))_+ \triangleq \max(Q(x; \xi), 0)) \geq Q(x; \xi) = +\infty \) with positive probability. Consequently, it follows that \(\mathbb{E}[Q(x, \xi)_+] = +\infty \).

(⇐) Suppose \(h(\xi) - T(\xi)x \in \text{pos } W \) with probability one. Then \(Q(x, \xi) = s_q(h - Tx) \). By (1), we have that

\[
s_q(\chi) \leq s_0(\chi) + \kappa \|q\| \|\chi\|.
\]

Furthermore, we recall that \(s_0(\chi) = 0 \) when \(\chi \in \text{pos } W \) implying that

\[
s_q(\chi) \leq \kappa \|q\| \|\chi\|.
\]
By using the triangle inequality, we have that

\[Q(x; \xi) = s_q(h(\xi) - T(\xi)x) \leq \kappa \| q(\xi) (\|h(\xi)\| + \|T(\xi)\|\|x\|) \text{ wp1.} \]

Since

\[0 \leq \kappa \| q(\xi) (\|h(\xi)\| + \|T(\xi)\|\|x\|) \text{ wp1,} \]

it follows that

\[\max(Q(x; \xi), 0) \leq \kappa \| q(\xi) (\|h(\xi)\| + \|T(\xi)\|\|x\|) \text{ wp1.} \]

Taking expectations, we have the following:

\[\mathbb{E}[Q(x; \xi)_+] \leq \kappa \mathbb{E}[\|q(\xi)\|\|h(\xi)\|] + \kappa \mathbb{E}[\|q(\xi)\|\|T(\xi)\|\|x\|]. \]
By assumption, we have that $E[||q||h||] < +\infty$ and $E[||q||T||] < +\infty$. As a result, $E[Q(x, \xi)_{+}] < +\infty$.

Proposition 11 Suppose that (i) the recourse is fixed, (ii) for a.e. q the set $\Pi(q)$ is nonempty, and (iii) the following holds:

$$E[||q||h||] < +\infty \text{ and } E[||q||T||] < +\infty.$$

Then the following hold: (a) the expectation function $Q(x)$ is well-defined and $Q(x) > -\infty$ for all $x \in \mathbb{R}^n$; (b) Moreover, $Q(x)$ is convex, lower semicontinuous, and Lipschitz continuous on $\text{dom } \phi$, and its domain is a convex closed subset of \mathbb{R}^n is given by

$$\text{dom} Q = \{ x : h - Tx \in \text{pos } W \text{ w.p. } 1. \}$$

Proof:

(a): By (ii), $\Pi(q)$ is nonempty with probability one. Consequently, for
almost every $\xi \in \Xi$, $Q(x, \xi) = s_q(h(\xi) - T(\xi)x)$ for every x and for almost every ξ.

Suppose $\pi(q)$ denotes the element of $\Pi(q)$ closest to zero; by the closedness of $\Pi(q)$, it exists and by Hoffman’s lemma, there exists a constant κ such that

$$||\pi(q)|| \leq \kappa ||q||.$$

By the definition of the support function,

$$s_q(h - Tx) = \sup_{\pi(q) \in \Pi(q)} \pi(q)^T(h - Tx) \geq \pi(q)^T(h - Tx)$$
and for every x, the following holds with probability one:

$$-\pi(q)^T(h - Tx) \leq \|\pi(q)\| (\|h\| + \|T\|\|x\|) \quad \text{(Cauchy-Schwartz and triangle inequality)}$$

$$\leq \kappa \|q\| (\|h\| + \|T\|\|x\|)$$

$$\implies \pi(q)^T(h - Tx) \geq -\kappa \|q\| (\|h\| + \|T\|\|x\|)$$

By (iii), we have that

$$\mathbb{E}[\|q\|\|h\|] < +\infty \text{ and } \mathbb{E}[\|q\|\|T\|] < +\infty$$

and it can be concluded that $Q(\bullet)$ is well defined and $Q(x) > -\infty$ for all $x \in \mathbb{R}^n$.

(b): Since $s_q(\bullet)$ is lower semicontinuous in \bullet, it follows that $Q(\bullet)$ is also lower semicontinuous by Fatou’s Lemma\(^\dag\)

\(^\dag\)Just to jog your memory, Fatou’s Lemma allows for interchanging integrals and limits under assumptions on the integrand.
Lemma 3 (Fatou’s Lemma) Suppose that there exists a P-integrable function $g(\omega)$ such that $f_n(\bullet) \geq g(\bullet)$. Then

$$\liminf_{n \to \infty} \mathbb{E}[f_n] \geq \mathbb{E}\left[\liminf_{n \to \infty} f_n\right].$$

Convexity and closedness of $\text{dom}Q$ is a consequence of the convexity and lower semicontinuity of Q. By Prop. 10, $Q(x) < +\infty$ if and only if $h(\xi) - T(\xi)x \in \text{pos} W$ with probability one. But this implies that

$$\text{dom}Q = \{x \in \mathbb{R}^n : Q(x) < +\infty\} = \{x \in \mathbb{R}^n : h(\xi) - T(\xi)x \in \text{pos} W, \text{ with probability one.}\}.$$

(c): In the remainder of the proof, we show the Lipschitz continuity of

A random variable $Z : \Omega \to \mathbb{R}^d$ is P-integrable if $\mathbb{E}[Z]$ is well-defined and finite. Recall that $\mathbb{E}[Z(\omega)]$ is well-defined if it does not happen that $\mathbb{E}[Z(\omega)_+]$ and $\mathbb{E}[(-Z(\omega))_+]$ are $+\infty$ in which case $\mathbb{E}[Z] = \mathbb{E}[Z_+] - \mathbb{E}[(-Z)_+]$.

\(\mathcal{Q}(x) \). Consider \(x_1, x_2 \in \text{dom} \mathcal{Q} \). Then, we have

\[h(\xi) - T(\xi)x_1 \in \text{pos} W, \text{ w.p.1} \quad \text{and} \quad h(\xi) - T(\xi)x_2 \in \text{pos} W, \text{ w.p.1}. \]

By leveraging this claim, if \(\Pi(q) \) is nonempty, we have that

\[|s_q(h - Tx_1) - s_q(h - Tx_2)| \leq \kappa \|q\| \|T\| \|x_1 - x_2\|. \]

Taking Expectations on both sides, we have that

\[|s_q(h - Tx_1) - s_q(h - Tx_2)| \leq \kappa \|q\| \|T\| \|x_1 - x_2\|. \]
\[|\mathcal{Q}(x_1) - \mathcal{Q}(x_2)| \leq \mathbb{E}[|s_q(h - Tx_1) - s_q(h - Tx_2)|] \]
\[\leq \kappa \mathbb{E}[\|q\|\|T\|\|x_1 - x_2\|], \]

where the first inequality follows from the application of Jensen’s inequality** and the convexity of the norm. The Lipschitz continuity of \(\mathcal{Q}(x) \) on its domain follows.

\[\blacksquare \]

**Recall that Jensen’s inequality implies that \(f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)] \), when \(f \) is a convex function and \(\mathbb{E}[X] \) denotes the expectation of a random variable \(X \).
References