Homework 1
Due 01/24/2017

Exercise 1. Let $X = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 \geq 0, \ x_2 \geq 0\}$.

(a) Is X a cone? Answer yes or no, and justify your answer.

(b) Find the dual cone of X?

(c) Find the normal cone $N(\hat{x}; X)$ and the tangent cone $T(\hat{x}; X)$ to the set X at each of the following choices for \hat{x}:

 (i) $\hat{x} = (0, 0)$,

 (ii) $\hat{x} = (0, 1)$.

Exercise 2. Let $X = (0, 0) \cup \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 > 0, \ x_2 > 0\}$.

(a) Is X a cone? Answer yes or no, and justify your answer.

(b) Find the dual cone of X?

(c) Find the normal cone $N(\hat{x}; X)$ and the tangent cone $T(\hat{x}; X)$ to the set X at $\hat{x} = (0, 0)$.

Exercise 3. In this exercise, we use the notion of a (lower) level set of a function, defined as follows.

Definition 1. The (lower) level set of a function $f : \mathbb{R}^n \to \mathbb{R}$ is given by

$$\{x \in \mathbb{R}^n \mid f(x) \leq \gamma\}.$$

When the function is convex, we refer to this set simply by a level set.

Consider now a convex function $f : \mathbb{R}^n \to \mathbb{R}$. Let \hat{x} be a given vector in \mathbb{R}^n, and consider the level set X associated with \hat{x}, i.e.,

$$X = \{x \in \mathbb{R}^n \mid f(x) \leq f(\hat{x})\}.$$
Prove the following:

(a) Show that the set X is convex.

(b) Assuming that f is continuously differentiable over \mathbb{R}^n, show that the tangent cone $T(\hat{x}; X)$ and the normal cone $N(\hat{x}; X)$ of the level set X at the point \hat{x} are given by

$$T(\hat{x}; X) = \{d \mid \nabla f(\hat{x})'d \leq 0\},$$

$$N(\hat{x}; X) = \{\lambda \nabla f(\hat{x}) \mid \lambda \geq 0\}.$$

Hint: You may find it useful to exploit convexity of f and the first-order Taylor expansion of f at \hat{x}.

Exercise 4. Prove the following:

(a) Suppose $g(x) = f(Ax)$ where $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$ and $g : \mathbb{R}^n \to (-\infty, +\infty]$ and $f : \mathbb{R}^m \to (-\infty, +\infty]$. If f is convex, then g is convex.

(b) Suppose for $i \in I$ (an arbitrary index set), $f_i : \mathbb{R}^n \to (-\infty, +\infty]$ and consider the function $g : \mathbb{R}^n \to (-\infty, +\infty]$ defined as

$$g(x) = \sup_{i \in I} f_i(x).$$

Suppose the f_i are convex for all i. Then g is a convex function. (hint: use the notion of epigraphs)

Exercise 5. Consider the halfspace defined by $H = \{x \in \mathbb{R}^n : a'x + \alpha \geq 0\}$, where $a \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$. Formulate and solve the optimization problem of finding the point in H that has the smallest Euclidean norm.

Exercise 6 (Extra credit). Let X_1 and X_2 be two sets with and let $\hat{x} \in X_1 \cap X_2$. Prove that the following relations hold for the tangent cones and the normal cones of X_1, X_2 and $X_1 \cap X_2$ at the point \hat{x}:

$$T(\hat{x}; X_1 \cap X_2) \subseteq T(\hat{x}; X_1) \cap T(\hat{x}; X_2),$$

$$N(\hat{x}; X_1) \cap N(\hat{x}; X_2) \subseteq N(\hat{x}; X_1 \cap X_2).$$